login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131296 a(n) = ds_5(a(n-1))+ds_5(a(n-2)), a(0)=0, a(1)=1; where ds_5=digital sum base 5. 12
0, 1, 1, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The digital sum analog (in base 5) of the Fibonacci recurrence.

When starting from index n=3, periodic with Pisano period A001175(4)=6.

a(n) and Fib(n)=A000045(n) are congruent modulo 4 which implies that (a(n) mod 4) is equal to (Fib(n) mod 4)=A079343(n). Thus (a(n) mod 4) is periodic with the Pisano period A001175(4)=6 too.

For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=5=A131319(5) for the base p=5.

LINKS

Table of n, a(n) for n=0..100.

Index entries for Colombian or self numbers and related sequences

FORMULA

a(n) = a(n-1)+a(n-2)-4*(floor(a(n-1)/5)+floor(a(n-2)/5)).

a(n) = floor(a(n-1)/5)+floor(a(n-2)/5)+(a(n-1)mod 5)+(a(n-2)mod 5).

a(n) = A002266(a(n-1))+A002266(a(n-2))+A010874(a(n-1))+A010874(a(n-2)).

a(n) = Fib(n)-4*sum{1<k<n, Fib(n-k+1)*floor(a(k)/5)}, where Fib(n)=A000045(n).

EXAMPLE

a(10)=3, since a(8)=5=10(base 5), ds_5(5)=1,

a(9)=2, ds_5(2)=2 and so a(10)=1+2.

CROSSREFS

Cf. A000045, A010073, A010074, A010075, A010076, A010077, A131294, A131295, A131297, A131318, A131319, A131320.

Sequence in context: A102149 A321782 A104204 * A267808 A239852 A263279

Adjacent sequences:  A131293 A131294 A131295 * A131297 A131298 A131299

KEYWORD

nonn,base

AUTHOR

Hieronymus Fischer, Jun 27 2007

EXTENSIONS

Incorrect comment removed by Michel Marcus, Apr 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 23:21 EDT 2019. Contains 325109 sequences. (Running on oeis4.)