This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010075 a(n) = sum of base-8 digits of a(n-1) + sum of base-8 digits of a(n-2). 12
 0, 1, 1, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The digital sum analog (in base 8) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007 a(n) and Fib(n)=A000045(n) are congruent modulo 7 which implies that (a(n) mod 7) is equal to (Fib(n) mod 7). Thus (a(n) mod 7) is periodic with the Pisano period A001175(7)=16. - Hieronymus Fischer, Jun 27 2007 For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=11=A131319(8) for the base p=8. - Hieronymus Fischer, Jun 27 2007 LINKS FORMULA Periodic from n=3 with period 16. - Franklin T. Adams-Watters, Mar 13 2006 From Hieronymus Fischer, Jun 27 2007: (Start) a(n) = a(n-1)+a(n-2)-7*(floor(a(n-1)/8)+floor(a(n-2)/8)). a(n) = floor(a(n-1)/8)+floor(a(n-2)/8)+(a(n-1)mod 8)+(a(n-2)mod 8). a(n) = (a(n-1)+a(n-2)+7*(A010877(a(n-1))+A010877(a(n-2))))/8. a(n) = Fib(n)-7*sum{1

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 18:29 EDT 2019. Contains 327180 sequences. (Running on oeis4.)