The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130196 Period 3: repeat [1, 2, 2]. 24
 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Reinhard Zumkeller, Nov 12 2009: (Start) Denominator of x(n)=x(n-1)+x(n-2), x(0)=0, x(1)=1/2; numerator = A167808; a(n) = A131534(n)+A022003(n) = A080425(n)-A131534(n)+2 = A153727(n)/A131534(n). (End) Continued fraction expansion of (5+sqrt(85))/10. - Klaus Brockhaus, May 07 2010 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,1). FORMULA a(n+3) = a(n) with a(0)=1, a(1)=a(2)=2. a(n) = (1/9)*{8*(n mod 3)+5*[(n+1) mod 3]+2*[(n+2) mod 3]}. - Paolo P. Lava, Aug 28 2007 G.f.: (1+2*x+2*x^2)/(1-x)*(x^2+x+1). - R. J. Mathar, Nov 14 2007 a(n) = 5/3+(2/3)*[-1/2-(1/2*I)*sqrt(3)]^(-2)*[-1/2-(1/2*I)*sqrt(3)]^n+(2/3)*[-1/2+(1/2*I)*sqrt(3)]^(-2)*[-1/2+(1/2*I)*sqrt(3)]^n+(1/3)*[-1/2-(1/2*I)*sqrt(3)]^n+(1/3)*[-1/2 +(1/2*I)*sqrt(3)]^n+(2/3)*[-1/2-(1/2*I)*sqrt(3)]^(-1)*[-1/2-(1/2*I)*sqrt(3)]^n+(2/3)*[-1/2+(1/2*I)*sqrt(3)]^(-1)*[-1/2+(1/2*I)*sqrt(3)]^n, with I=sqrt(-1). - Paolo P. Lava, Jul 17 2008 a(n) = (5-2*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008 a(n) = 2 - 0^(n mod 3). - Reinhard Zumkeller, Nov 12 2009 a(n) = A011655(n) + 1 = (n^2 mod 3) + 1. - Boris Putievskiy, Feb 03 2013 a(n) = floor((n+1)*5/3) - floor(n*5/3). - Hailey R. Olafson, Jul 23 2014 MAPLE A130196:=n->floor(5*(n+1)/3)-floor(5*n/3): seq(A130196(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014 MATHEMATICA Table[Floor[5 (n + 1)/3] - Floor[5 n/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 24 2014 *) Denominator[LinearRecurrence[{1, 1}, {0, 1/2}, 110]] (* or *) PadRight[{}, 110, {1, 2, 2}] (* Harvey P. Dale, Aug 08 2014 *) LinearRecurrence[{0, 0, 1}, {1, 2, 2}, 105] (* Ray Chandler, Aug 03 2015 *) PROG (PARI) a(n)=2-0^(n%3) \\ Charles R Greathouse IV, Jun 01 2011 (MAGMA) [Floor(5*(n+1)/3)-Floor(5*n/3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014 CROSSREFS Cf. A177347 (decimal expansion of (5+sqrt(85))/10). - Klaus Brockhaus, May 07 2010 Cf. A022003, A080425, A131534, A153727, A167808. Sequence in context: A098398 A306211 A131714 * A230866 A158209 A234538 Adjacent sequences:  A130193 A130194 A130195 * A130197 A130198 A130199 KEYWORD nonn,easy AUTHOR Paul Curtz, Aug 05 2007 EXTENSIONS More terms from Klaus Brockhaus, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)