login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129905 G.f. (2*x+1)*(1-x)/((x+1)*(x^2-3*x+1)). 1
1, 3, 6, 17, 43, 114, 297, 779, 2038, 5337, 13971, 36578, 95761, 250707, 656358, 1718369, 4498747, 11777874, 30834873, 80726747, 211345366, 553309353, 1448582691, 3792438722, 9928733473, 25993761699, 68052551622, 178163893169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n+2) - a(n) = A054486(n+1)

Form the infinite recursive array R(i,j) as follows: R(1,j) = F(j), R(2,j) = L(j) and for i>2, R(i,j) = R(i-1,j)+R(i-2,j) where F(j) is the j^th Fibonacci number and L(j) is the j^th Lucas number. Then for i>0, R(i,i) = a(i-1):

1   1   2   3    5    8   13  ...

1   3   4   7   11   18   29  ...

2   4   6  10   16   26   42  ...

3   7  10  17   27   44   71  ...

5  11  16  27   43   70  113  ...

8  18  26  44   70  114  184  ...

13  29  42  71  113  184  297  ...

..................................

- Andrew Rupinski, Jan. 31, 2011 -

LINKS

Table of n, a(n) for n=0..27.

Index to sequences with linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3); a(n) = -1/5*(3/2+1/2*sqrt(5))^n*sqrt(5)+4/5*(3/2+1/2*sqrt(5))^n+1/5*(3/2-1/2*sqrt(5))^n*sqrt(5)+4/5*(3/2-1/2*sqrt(5))^n+2/5*(-1)^n

a(n) = -2*(-1)^n/5-8*A001906(n)/5+7*A001906(n+1)/5. [From R. J. Mathar, Nov 10 2009]

a(n)= (Fibonacci(n-2)^2+Fibonacci(n+2)^2+Fibonacci(2n))/2,   [From Gary Detlefs Dec 20 2010]

MATHEMATICA

CoefficientList[ Series[(1 + x - 2 x^2)/(1 - 2 x - 2 x^2 + x^3), {x, 0, 27}], x] (* Or *)

t[1, k_] := Fibonacci@ k; t[2, k_] := LucasL@ k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 2, k]; Table[ t[n, n], {n, 28}] (* Robert G. Wilson v *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B] with A = + .5'i + .5'j + .5'k + 'ji' + .5e ; B = + .5i' + .5j' + .5k' + 'ij' + .5e (apart from initial term)

CROSSREFS

Cf. A001906, A054486.

Sequence in context: A212421 A238428 A232771 * A143363 A216878 A237670

Adjacent sequences:  A129902 A129903 A129904 * A129906 A129907 A129908

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Jun 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 02:34 EST 2014. Contains 250152 sequences.