The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054486 Expansion of (1+2*x)/(1-3*x+x^2). 9
 1, 5, 14, 37, 97, 254, 665, 1741, 4558, 11933, 31241, 81790, 214129, 560597, 1467662, 3842389, 10059505, 26336126, 68948873, 180510493, 472582606, 1237237325, 3239129369, 8480150782, 22201322977, 58123818149, 152170131470, 398386576261, 1042989597313 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A000285. - R. J. Mathar, Oct 26 2011 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193. E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242. Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (3,-1). FORMULA a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=5. a(n) = (5*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5). a(n) + 7*A001519(n) = A005248(n). - Creighton Dement, Oct 30 2004 a(n) = Lucas(2*n+1) + Fibonacci(2*n) = A002878(n) + A001906(n) = A025169(n-1) + A001906(n+1). a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-6)^k. - Philippe Deléham, Mar 05 2014 0 = -11 + a(n)^2 - 3*a(n)*a(n+1) + a(n+1)^2 for all n in Z. - Michael Somos, Mar 17 2015 a(n) = -2*F(n)^2 + 6*F(n)*F(n+1) + F(n+1)^2 for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015 a(n) = 3*F(2*n) + F(2*n+1) for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015 a(n) = -A100545(-2-n) for all n in Z. - Michael Somos, Mar 17 2015 a(n) = A000285(2*n) = A228208(2*n+1) = A104449(2*n+1) for all n in Z. - Michael Somos, Mar 17 2015 From Klaus Purath, Nov 05 2019: (Start) a(n) = (a(n-m) + a(n+m))/Lucas(2*m), m <= n. a(n) = sum of 2*m+1 consecutive terms starting with a(n-m) divided by Lucas(2*m+1), m <= n. a(n) = alternating sum of 2*m+1 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+1), m <= n. a(n) + a(n+1) = sum of 2*m+2 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+2), m <= n. a(n) + a(n+1) = (a(n-m) + a(n+m+1))/Fibonacci(2*m+1), m <= n. The following formulas are extended to negative indexes: a(n) = 3*Fibonacci(2*n+1) - Fibonacci(2*n-3). a(n) = (Fibonacci(2*n+5) - 3* Fibonacci(2*n-1))/2. a(n) = (4*Lucas(2*n+2) - Lucas(2*n-4))/5. a(n) = Fibonacci(2*n+5) - 4*Fibonacci(2*n+1). a(n) = (5*Fibonacci(2*n+5) - Fibonacci(2*n-7))/12. (End) E.g.f.: exp(-(1/2)*(-3+sqrt(5))*x)*(-7 + sqrt(5) + (7 + sqrt(5))*exp(sqrt(5)*x))/(2*sqrt(5)). - Stefano Spezia, Nov 19 2019 a(n) = 3*n + 1 + Sum_{k=1..n} k*a(n-k). - Yu Xiao, Jun 20 2020 EXAMPLE G.f. = 1 + 5*x + 14*x^2 + 37*x^3 + 97*x^4 + 254*x^5 + 665*x^6 + 1741*x^7 + ... MAPLE with(combinat); f:=fibonacci; seq(f(2*n+2)+2*f(2*n), n=0..30); # G. C. Greubel, Nov 08 2019 MATHEMATICA CoefficientList[Series[(2*z+1)/(z^2-3*z+1), {z, 0, 30}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *) a[ n_]:= 3 Fibonacci[2n] + Fibonacci[2n+1]; (* Michael Somos, Mar 17 2015 *) LinearRecurrence[{3, -1}, {1, 5}, 40] (* Harvey P. Dale, Apr 24 2019 *) PROG (PARI) Vec((1+2*x)/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 15 2011 (PARI) {a(n) = 3*fibonacci(2*n) + fibonacci(2*n+1)}; /* Michael Somos, Mar 17 2015 */ (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+2*x)/(1-3*x+x^2)) ); // Marius A. Burtea, Nov 05 2019 (MAGMA) a:=[1, 5]; [n le 2 select a[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Marius A. Burtea, Nov 05 2019 (Sage) f=fibonacci; [f(2*n+2) +2*f(2*n) for n in (0..30)] # G. C. Greubel, Nov 08 2019 (GAP) F:=Fibonacci;; List([0..30], n-> F(2*n+2) +2*F(2*n) ); # G. C. Greubel, Nov 08 2019 CROSSREFS Cf. A000032, A000045, A000285, A002878, A100545, A104449, A228208. Sequence in context: A292170 A224716 A127980 * A072130 A196976 A045553 Adjacent sequences:  A054483 A054484 A054485 * A054487 A054488 A054489 KEYWORD easy,nonn AUTHOR Barry E. Williams, May 06 2000 EXTENSIONS "a(1)=5", not "a(0)=5" from Dan Nielsen (nielsed(AT)uah.edu), Sep 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 05:12 EDT 2021. Contains 343059 sequences. (Running on oeis4.)