login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054485 Expansion of (1+3*x)/(1-4*x+x^2). 4
1, 7, 27, 101, 377, 1407, 5251, 19597, 73137, 272951, 1018667, 3801717, 14188201, 52951087, 197616147, 737513501, 2752437857, 10272237927, 38336513851, 143073817477, 533958756057, 1992761206751, 7437086070947, 27755583077037 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.

E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n) = (7*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/2*sqrt(3).

a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(0)=7.

MATHEMATICA

LinearRecurrence[{4, -1}, {1, 7}, 40] (* Vincenzo Librandi, Jun 23 2012 *)

PROG

(MAGMA) I:=[1, 7]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in[1..30]]; // Vincenzo Librandi, Jun 23 2012

(PARI) Vec((1+3*x)/(1-4*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015

CROSSREFS

Cf. A054491.

Sequence in context: A282642 A185080 A006350 * A090856 A055917 A056120

Adjacent sequences:  A054482 A054483 A054484 * A054486 A054487 A054488

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, May 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 12:59 EDT 2017. Contains 287247 sequences.