login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054487 a(n) = (3*n+4)*binomial(n+7, 7)/4. 3
1, 14, 90, 390, 1320, 3762, 9438, 21450, 45045, 88660, 165308, 294372, 503880, 833340, 1337220, 2089164, 3187041, 4758930, 6970150, 10031450, 14208480, 19832670, 27313650, 37153350, 49961925, 66475656, 87576984, 114316840 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.

E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

G.f.: (1+5*x)/(1-x)^9.

From G. C. Greubel, Jan 19 2020: (Start)

a(n) = 6*binomial(n+8, 8) - 5*binomial(n+7, 7).

E.g.f.: (20160 +262080*x +635040*x^2 +540960*x^3 +205800*x^4 +38808*x^5 +3724*x^6 +172*x^7 +3*x^8)*exp(x)/20160. (End)

MAPLE

seq( (3*n+4)*binomial(n+7, 7)/4, n=0..40); # G. C. Greubel, Jan 19 2020

MATHEMATICA

CoefficientList[Series[(1+5x)/(1-x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)

Table[6*Binomial[n+8, 8] -5*Binomial[n+7, 7], {n, 0, 40}] (* G. C. Greubel, Jan 19 2020 *)

PROG

(MAGMA) [((3*n+4)*Binomial(n+7, 7))/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014

(PARI) a(n) = (3*n+4)*binomial(n+7, 7)/4; \\ Michel Marcus, Sep 07 2017

(Sage) [(3*n+4)*binomial(n+7, 7)/4 for n in (0..40)] # G. C. Greubel, Jan 19 2020

(GAP) List([0..40], n-> (3*n+4)*Binomial(n+7, 7)/4 ); # G. C. Greubel, Jan 19 2020

CROSSREFS

Cf. A034265.

Cf. A093563 ((6, 1) Pascal, column m=8).

Sequence in context: A195267 A077538 A114242 * A200191 A266805 A301380

Adjacent sequences:  A054484 A054485 A054486 * A054488 A054489 A054490

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, May 06 2000

EXTENSIONS

Corrected and extended by James A. Sellers, May 10 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 14:41 EDT 2021. Contains 343177 sequences. (Running on oeis4.)