The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129904 Find the first two terms in A003215, say A003215(i) and A003215(j), that are divisible by a number in A016921 not 1, say by k = A016921(m). Then i + j + 1 = k and k is added to the sequence. 0
 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 127, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457, 463 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE A003215(1) = 7 is divisible by A016921(1) = 7, A003215(5) = 91 is divisible by A016921(1) = 7 and 5+1+1=7, so 7 is a member. MAPLE isA129904 := proc(k)     local i, j ;     if modp(k, 6) = 1 and k> 1 then         for i from 0 to k-1 do             j := k-1-i ;             if modp(A003215(i), k) =0 and modp(A003215(j), k) =0 then                 return true;             end if;         end do:         false ;     else         false;     end if; end proc: for k from 1 to 400 do     if isA129904(k) then         printf("%d, ", k) ;     end if; end do: CROSSREFS Cf. A003215, A016921. Sequence in context: A167462 A088513 A004611 * A133290 A038590 A218146 Adjacent sequences:  A129901 A129902 A129903 * A129905 A129906 A129907 KEYWORD nonn AUTHOR Mats Granvik, Jun 04 2007 EXTENSIONS Extended by R. J. Mathar, Dec 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 09:17 EST 2020. Contains 331318 sequences. (Running on oeis4.)