login
A237670
Inverse Moebius transform of Catalan numbers.
1
1, 3, 6, 17, 43, 140, 430, 1447, 4868, 16841, 58787, 208166, 742901, 2674872, 9694893, 35359117, 129644791, 477643702, 1767263191, 6564137275, 24466267455, 91482622429, 343059613651, 1289904356920, 4861946401495, 18367353815055, 69533550920872
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} binomial(2*d,d)/(d+1).
G.f.: Sum_{k>=1} (1-2*x^k-sqrt(1-4*x^k))/(2*x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(binomial(2*k,k)/(k*(k+1)))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018
MATHEMATICA
Table[Sum[Binomial[2 d, d]/(d + 1), {d, Divisors[n]}], {n, 1, 100}]
PROG
(Maxima) a(n) := lsum(binomial(2*d, d)/(d+1), d, listify(divisors(n)));
makelist(a(n), n, 1, 40);
(Magma) [&+[Binomial(2*d, d)/(d+1): d in Divisors(n)]: n in [1..40]]; // Bruno Berselli, Feb 11 2014
(PARI) a(n) = sumdiv(n, d, binomial(2*d, d)/(d+1)); \\ Michel Marcus, May 20 2018
CROSSREFS
Cf. A000108.
Sequence in context: A129905 A143363 A216878 * A321227 A006081 A099511
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Feb 11 2014
STATUS
approved