This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129367 A symmetrical triangle of coefficient weights: A002415 :f(n)=n^2*(n^2 - 1)/12; t(n,m)=f(n - m + 1)*f(m + 1). 1
 36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums with zeros: {0, 0, 36, 240, 1000, 3260, 9052, 22372, 50545}. REFERENCES Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, Inc., New York, 1972, page145: Number of components from curvature R(i,j,k,l) :A002415. LINKS FORMULA f(n)=n^2*(n^2 - 1)/12; t(n,m)=f(n - m + 1)*f(m + 1). EXAMPLE Initial Zeros removed: {36}, {120, 120}, {300, 400, 300}, {630, 1000, 1000, 630}, {1176, 2100, 2500, 2100, 1176}, {2016, 3920, 5250, 5250, 3920, 2016}, {3240, 6720, 9800, 11025, 9800, 6720, 3240}, {4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950}, {7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260} MATHEMATICA f[n_] = n*(n - 1)*(n - 2)*(n + 3)/12; t[n_, m_] = f[n - m + 1]*f[m + 1]; Table[Table[t[n, m], {m, 2, n - 2}], {n, 2, 12}]; Flatten[%] CROSSREFS Cf. A117662, A002415. Sequence in context: A033575 A044287 A044668 * A287861 A242356 A165966 Adjacent sequences:  A129364 A129365 A129366 * A129368 A129369 A129370 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Aug 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 08:27 EDT 2019. Contains 325216 sequences. (Running on oeis4.)