login
A129368
a(n) = Sum_{k=floor((n+1)/2)..n} binomial(2*k,k).
2
1, 2, 8, 26, 96, 342, 1266, 4678, 17548, 66098, 250854, 956034, 3660190, 14059866, 54176466, 209290554, 810370944, 3143964294, 12219099594, 47564314774, 185410843594, 723668533278, 2827767496998, 11061197519166
OFFSET
0,2
COMMENTS
Partial sums of A129369.
LINKS
FORMULA
G.f.: (1/(1-x))*( 1/sqrt(1-4*x) - x/sqrt(1-4*x^2) ).
a(n) = Sum_{k=0..floor(n/2)} C(2*(n-k), n-k).
MATHEMATICA
Table[Sum[Binomial[2k, k], {k, Floor[(n+1)/2], n}], {n, 0, 30}] (* Harvey P. Dale, Aug 13 2012 *)
PROG
(Magma) [(&+[Binomial(2*(n-k), n-k): k in [0..Floor(n/2)]]): n in [0..60]]; // G. C. Greubel, Jan 31 2024
(SageMath) [sum(binomial(2*(n-k), n-k) for k in range(1+(n//2))) for n in range(61)] # G. C. Greubel, Jan 31 2024
CROSSREFS
Cf. A129369.
Sequence in context: A307401 A067855 A301699 * A357221 A281345 A348240
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 11 2007
STATUS
approved