login
A127925
Primes p such that 2p < prime(k-i) + prime(k+i) for i=1..k-1, where p=prime(k).
2
3, 7, 19, 23, 43, 47, 73, 109, 113, 199, 283, 293, 313, 317, 463, 467, 503, 509, 523, 619, 661, 683, 691, 887, 1063, 1069, 1109, 1129, 1303, 1307, 1321, 1327, 1613, 1621, 1627, 1637, 1669, 1789, 2143, 2161, 2383, 2393, 2399, 2477, 2731, 2753, 2803, 2861, 2971
OFFSET
1,1
COMMENTS
One of several sets of "good primes" in section A14 of Guy.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed. Springer, 2004.
MATHEMATICA
t={}; n=1; While[Length[t]<100, n++; p=Prime[n]; i=1; While[i<n && 2p<Prime[n-i]+Prime[n+i], i++ ]; If[i==n, AppendTo[t, p]]]; t
CROSSREFS
Cf. A028388.
Sequence in context: A322963 A018432 A205302 * A032388 A050866 A226923
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 06 2007
STATUS
approved