The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226923 Values of n such that L(3) and N(3) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n. 1
 -3, 7, 19, 25, -33, 39, -51, -65, 79, 105, 117, 177, -231, 259, -401, 483, 499, -513, 529, -597, -635, -705, 723, -747, -861, -863, -887, -905, -933, -1017, 1033, 1089, -1125, -1155, -1235, -1307, 1425, -1461, -1473, 1579, 1635, 1687, 1719, -1785, 1797, 1839, 1965, -2051, -2093, 2137, -2201, 2217, -2331, -2385, 2445, 2485, 2587, -2597, 2599, -2607, -2625, -2781, 2839, 2907 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..1000 Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195. MATHEMATICA k = 3; (* adjust for related sequences *) fL[n_] := (n^2 + n + 1)*2^(2*k) + (2*n + 1)*2^k + 1; fN[n_] := (n^2 + n + 1)*2^k + n; nn = 3000; A = {}; For[n = -nn, n <= nn, n++, If[PrimeQ[fL[n]] && PrimeQ[fN[n]], AppendTo[A, n]]]; cmpfunc[x_, y_] := If[x == y, Return[True], ax = Abs[x]; ay = Abs[y]; If[ax == ay, Return[x < y], Return[ ax < ay]]]; Sort[A, cmpfunc] (* Jean-François Alcover, Jul 17 2013, translated and adapted from Joerg Arndt's Pari program in A226921 *) CROSSREFS Cf. A226921-A226929, A227448, A227449, A227515-A227523. Sequence in context: A127925 A032388 A050866 * A001985 A203321 A203319 Adjacent sequences:  A226920 A226921 A226922 * A226924 A226925 A226926 KEYWORD sign AUTHOR N. J. A. Sloane, Jul 12 2013 EXTENSIONS More terms from Vincenzo Librandi, Jul 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 9 11:06 EDT 2020. Contains 335543 sequences. (Running on oeis4.)