login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028388 Good primes (version 2): prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1. 11
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307, 311, 331, 347, 419, 431, 541, 557, 563, 569, 587, 593, 599, 641, 727, 733, 739, 809, 821, 853, 929, 937, 967, 1009, 1031, 1087, 1151, 1213, 1277 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Selfridge conjectured, and Pomerance proved, that there are infinitely many numbers in this sequence.  Pomerance asks if the sequence has density 0. - Charles R Greathouse IV, Apr 14 2011

REFERENCES

Guy, R. K. `Good' Primes and the Prime Number Graph. A14 in Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, pp. 32-33, 1994.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

Carl Pomerance, The prime number graph, Mathematics of Computation 33:145 (1979), pp. 399-408.

Eric Weisstein's World of Mathematics, Good Prime

Eric Weisstein's World of Mathematics, Selfridge's Conjecture

MATHEMATICA

Module[{nn=300, prs}, prs=Prime[Range[2nn]]; qprQ[n_]:=Module[{pi= PrimePi[n]}, n^2>Max[Times@@@Thread[{Take[prs, pi-1], Reverse[Take[ prs, {pi+1, 2 pi-1}]]}]]]; Select[Take[prs, nn], qprQ]] (* Harvey P. Dale, May 13 2012 *)

PROG

(MAGMA) [NthPrime(n): n in [2..220] | forall{i: i in [1..n-1] | NthPrime(n)^2 gt NthPrime(n-i)*NthPrime(n+i)}]; // Bruno Berselli, Oct 23 2012

(PARI) is(n)=if(!isprime(n), return(0)); my(p=n, q=n, n2=n^2); while(p>2, p=precprime(p-1); q=nextprime(q+1); if(n2<p*q, return(0))); n>2 \\ Charles R Greathouse IV, Jul 02 2013

CROSSREFS

Cf. A046869.

Sequence in context: A268307 A108294 A046869 * A067606 A184247 A046135

Adjacent sequences:  A028385 A028386 A028387 * A028389 A028390 A028391

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 21:22 EST 2016. Contains 279011 sequences.