login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028388
Good primes (version 2): prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1.
11
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307, 311, 331, 347, 419, 431, 541, 557, 563, 569, 587, 593, 599, 641, 727, 733, 739, 809, 821, 853, 929, 937, 967, 1009, 1031, 1087, 1151, 1213, 1277
OFFSET
1,1
COMMENTS
Selfridge conjectured, and Pomerance proved, that there are infinitely many numbers in this sequence. Pomerance asks if the sequence has density 0. - Charles R Greathouse IV, Apr 14 2011
REFERENCES
Guy, R. K. `Good' Primes and the Prime Number Graph. A14 in Unsolved Problems in Number Theory, 2nd ed. Springer-Verlag, pp. 32-33, 1994.
LINKS
Carl Pomerance, The prime number graph, Mathematics of Computation 33:145 (1979), pp. 399-408.
Eric Weisstein's World of Mathematics, Good Prime
Eric Weisstein's World of Mathematics, Selfridge's Conjecture
MATHEMATICA
Module[{nn=300, prs}, prs=Prime[Range[2nn]]; qprQ[n_]:=Module[{pi= PrimePi[n]}, n^2>Max[Times@@@Thread[{Take[prs, pi-1], Reverse[Take[ prs, {pi+1, 2 pi-1}]]}]]]; Select[Take[prs, nn], qprQ]] (* Harvey P. Dale, May 13 2012 *)
PROG
(Magma) [NthPrime(n): n in [2..220] | forall{i: i in [1..n-1] | NthPrime(n)^2 gt NthPrime(n-i)*NthPrime(n+i)}]; // Bruno Berselli, Oct 23 2012
(PARI) is(n)=if(!isprime(n), return(0)); my(p=n, q=n, n2=n^2); while(p>2, p=precprime(p-1); q=nextprime(q+1); if(n2<p*q, return(0))); n>2 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
Cf. A046869.
Sequence in context: A268307 A108294 A046869 * A277718 A067606 A184247
KEYWORD
nonn
STATUS
approved