The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126074 Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k. 14
 1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Sum of the n-th row is the number of all permutations of n elements: Sum_{k=1..n, T(n,k)} = n! = A000142(n) We can extend T(n,k)=0, if k<=0 or k>n. From Peter Luschny, Mar 07 2009: (Start) Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link). Underlying partition triangle is A102189. Same partition product with length statistic is A008275. Diagonal a(A000217(n)) = rising_factorial(1,n-1), A000142(n-1) (n > 0). Row sum is A000142. (End) Let k in {1,2,3,...} index the family of sequences A000012, A000085, A057693, A070945, A070946, A070947, ... respectively. Column k is the k-th sequence minus its immediate predecessor. For example, T(5,3)=A057693(5)-A000085(5). - Geoffrey Critzer, May 23 2009 LINKS Alois P. Heinz, Rows n = 1..141, flattened Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021. S. W. Golomb and P. Gaal, On the number of permutations of n objects with greatest cycle length k, Adv. in Appl. Math., 20(1), 1998, 98-107. IBM Research, Ponder This, December 2006. Peter Luschny, Counting with Partitions. [From Peter Luschny, Mar 07 2009] Peter Luschny, Generalized Stirling_1 Triangles. [From Peter Luschny, Mar 07 2009] D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432. FORMULA T(n,1) = 1 T(n,2) = n! * Sum_{k=1..[n/2], (1/(k! * (2!)^k * (n-2k)!)} T(n,k) = n!/k * (1-1/(n-k)-...-1/(k+1)-1/2k), if n/3 < k <= n/2 T(n,k) = n!/k, if n/2 < k <= n T(n,n) = (n-1)! = A000142(n-1) E.g.f. for k-th column: exp(-x^k*LerchPhi(x,1,k))*(exp(x^k/k)-1)/(1-x). - Vladeta Jovovic, Mar 03 2007 From Peter Luschny, Mar 07 2009: (Start) T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that 1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!), f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+1). (End) Sum_{k=1..n} k * T(n,k) = A028418(n). - Alois P. Heinz, May 17 2016 EXAMPLE Triangle T(n,k) begins:   1;   1,   1;   1,   3,    2;   1,   9,    8,    6;   1,  25,   40,   30,   24;   1,  75,  200,  180,  144,  120;   1, 231,  980, 1260, 1008,  840,  720;   1, 763, 5152, 8820, 8064, 6720, 5760, 5040;   ... MAPLE A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,        add(mul(n-i, i=1..j-1)*A(n-j, k), j=1..k)))     end: T:= (n, k)-> A(n, k) -A(n, k-1): seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 11 2013 MATHEMATICA Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid [From Geoffrey Critzer, May 23 2009] PROG (Sage) def A126074(n, k):     f = factorial(n)     P = Partitions(n, max_part=k, inner=[k])     return sum(f // p.aut() for p in P) for n in (1..9): print([A126074(n, k) for k in (1..n)]) # Peter Luschny, Apr 17 2016 CROSSREFS Cf. A000142. Cf. A071007, A080510, A028418. Cf. A157386, A157385, A157384, A157383, A157400, A157391, A157392, A157393, A157394, A157395. - Peter Luschny, Mar 07 2009 T(2n,n) gives A052145 (for n>0). - Alois P. Heinz, Apr 21 2017 Sequence in context: A155788 A108073 A057731 * A108916 A119421 A121581 Adjacent sequences:  A126071 A126072 A126073 * A126075 A126076 A126077 KEYWORD base,nonn,tabl AUTHOR Dan Dima, Mar 01 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)