login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126074 Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k. 11
1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Sum of the n-th row is the number of all permutations of n elements: Sum_{k=1..n, T(n,k)} = n! = A000142(n) We can extend T(n,k)=0, if k<=0 or k>n.

Contribution from Peter Luschny, Mar 07 2009: (Start)

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -1,

summed over parts with equal biggest part (see the Luschny link).

Underlying partition triangle is A102189.

Same partition product with length statistic is A008275.

Diagonal a(A000217(n)) = rising_factorial(1,n-1), A000142(n-1) (n > 0).

Row sum is A000142. (End)

Let k in {1,2,3,...} index the family of sequences A000012, A000085, A057693, A070945, A070946, A070947, ... respectively. Column k is the k-th sequence minus its immediate predecessor. For example, T(5,3)=A057693(5)-A000085(5). [From Geoffrey Critzer, May 23 2009]

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

IBM Research : Ponder This

Peter Luschny, Counting with Partitions. [From Peter Luschny, Mar 07 2009]

Peter Luschny, Generalized Stirling_1 Triangles. [From Peter Luschny, Mar 07 2009]

FORMULA

T(n,1) = 1 T(n,2) = n! * Sum_{k=1..[n/2], (1/(k! * (2!)^k * (n-2k)!)} T(n,k) = n!/k * (1-1/(n-k)-...-1/(k+1)-1/2k), if n/3 < k <= n/2 T(n,k) = n!/k, if n/2 < k <= n T(n,n) = (n-1)! = A000142(n-1)

E.g.f. for k-th column: exp(-x^k*LerchPhi(x,1,k))*(exp(x^k/k)-1)/(1-x). - Vladeta Jovovic, Mar 03 2007

Contribution from Peter Luschny, Mar 07 2009: (Start)

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n

T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that

1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),

f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+1). (End)

Sum_{k=1..n} k * T(n,k) = A028418(n). - Alois P. Heinz, May 17 2016

EXAMPLE

1;

1,   1;

1,   3,    2;

1,   9,    8,    6;

1,  25,   40,   30,   24;

1,  75,  200,  180,  144,  120;

1, 231,  980, 1260, 1008,  840,  720;

1, 763, 5152, 8820, 8064, 6720, 5760, 5040;

MAPLE

A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,

       add(mul(n-i, i=1..j-1)*A(n-j, k), j=1..k)))

    end:

T:= (n, k)-> A(n, k) -A(n, k-1):

seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 11 2013

MATHEMATICA

Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid [From Geoffrey Critzer, May 23 2009]

PROG

(Sage)

def A126074(n, k):

    f = factorial(n)

    P = Partitions(n, max_part=k, inner=[k])

    return sum([f/p.aut() for p in P])

for n in (1..9): print [A126074(n, k) for k in (1..n)] # Peter Luschny, Apr 17 2016

CROSSREFS

Cf. A000142.

Cf. A071007, A080510, A028418.

Cf. A157386, A157385, A157384, A157383, A157400, A157391, A157392, A157393, A157394, A157395. - Peter Luschny, Mar 07 2009

T(2n,n) gives A052145 (for n>0). - Alois P. Heinz, Apr 21 2017

Sequence in context: A155788 A108073 A057731 * A108916 A119421 A121581

Adjacent sequences:  A126071 A126072 A126073 * A126075 A126076 A126077

KEYWORD

base,nonn,tabl

AUTHOR

Dan Dima, Mar 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 16:52 EDT 2017. Contains 287130 sequences.