login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102189 Array of multinomial numbers (row reversed order of table A036039). 9
1, 1, 1, 1, 3, 2, 1, 6, 3, 8, 6, 1, 10, 15, 20, 20, 30, 24, 1, 15, 45, 40, 15, 120, 90, 40, 90, 144, 120, 1, 21, 105, 70, 105, 420, 210, 210, 280, 630, 504, 420, 504, 840, 720, 1, 28, 210, 112, 420, 1120, 420, 105, 1680, 1120, 2520, 1344, 1120, 1260, 3360, 4032, 3360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

See Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2", read backwards.

The sequence of row lengths is [1,2,3,5,7,11,15,...] = A000041(n), n>=1 (partition numbers).

Row n of this array gives the coefficients of the cycle index polynomial n!*Z(S_n) for the symmetric group S_n. For instance, Z(S_4)= (x[1]^4 + 6*x[1]^2*x[2] + 3*x[2]^2 + 8*x[1]*x[3] + 6*x[4])/4!. The partitions of 4 appear here in the reversed Abramowitz-Stegun order.

See the W. Lang link "Solution of Newton's Identities" and the Note added Jun 06 2007 in the link "More rows and S_n cycle index polynomials" for the appearance of the signed array. - Wolfdieter Lang, Aug 01 2013

Multiplying the values of row n by the corresponding values in row n of A110141, one obtains n!. - Jaimal Ichharam, Aug 06 2015

LINKS

Table of n, a(n) for n=1..61.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.

Wolfdieter Lang, More rows and S_n cycle index polynomials.

Wolfdieter Lang, Solution of Newton's Identities.

Andrei Vieru, Analytic renormalization of multiple zeta functions. Geometry and combinatorics of generalized Euler reflection formula for MZV, arXiv preprint arXiv:1601.04703 [math.NT], 2016.

EXAMPLE

Triangle begins:

[1];

[1,1];

[1,3,2];

[1,6,3,8,6];

[1,10,15,20,20,30,24];

...

MATHEMATICA

aspartitions[n_] := Reverse /@ Sort[Sort /@ IntegerPartitions[n]]; ascycleclasses[n_Integer] := n!/(Times @@ #)& /@ ((#! Range[n]^#)& /@ Function[par, Count[par, #]& /@ Range[n]] /@ aspartitions[n]); row[n_] := ascycleclasses[n] // Reverse; Table[row[n], {n, 1, 8}] // Flatten (* Jean-Fran├žois Alcover, Feb 04 2014, after A036039 and Wouter Meeussen *)

CROSSREFS

Cf. A000041, A036039, A110141.

Sequence in context: A002130 A089145 A134199 * A031252 A208152 A194761

Adjacent sequences:  A102186 A102187 A102188 * A102190 A102191 A102192

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, Feb 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 20 14:39 EDT 2017. Contains 292271 sequences.