login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102189 Array of multinomial numbers (row reversed order of table A036039). 9
1, 1, 1, 1, 3, 2, 1, 6, 3, 8, 6, 1, 10, 15, 20, 20, 30, 24, 1, 15, 45, 40, 15, 120, 90, 40, 90, 144, 120, 1, 21, 105, 70, 105, 420, 210, 210, 280, 630, 504, 420, 504, 840, 720, 1, 28, 210, 112, 420, 1120, 420, 105, 1680, 1120, 2520, 1344, 1120, 1260, 3360, 4032, 3360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

See Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2", read backwards.

The sequence of row lengths is [1,2,3,5,7,11,15,...] = A000041(n), n>=1 (partition numbers).

Row n of this array gives the coefficients of the cycle index polynomial n!*Z(S_n) for the symmetric group S_n. For instance, Z(S_4)= (x[1]^4 + 6*x[1]^2*x[2] + 3*x[2]^2 + 8*x[1]*x[3] + 6*x[4])/4!. The partitions of 4 appear here in the reversed Abramowitz-Stegun order.

See the W. Lang link "Solution of Newton's Identities" and the Note added Jun 06 2007 in the link "More rows and S_n cycle index polynomials" for the appearance of the signed array. - Wolfdieter Lang, Aug 01 2013

Multiplying the values of row n by the corresponding values in row n of A110141, one obtains n!. - Jaimal Ichharam, Aug 06 2015

REFERENCES

Andrei Vieru, Analytic renormalization of multiple zeta functions. Geometry and combinatorics of generalized Euler reflection formula for MZV, arXiv preprint arXiv:1601.04703, 2016

LINKS

Table of n, a(n) for n=1..61.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.

Wolfdieter Lang, More rows and S_n cycle index polynomials.

Wolfdieter Lang, Solution of Newton's Identities.

EXAMPLE

[1]; [1,1]; [1,3,2]; [1,6,3,8,6]; [1,10,15,20,20,30,24]; ...

MATHEMATICA

aspartitions[n_] := Reverse /@ Sort[Sort /@ IntegerPartitions[n]]; ascycleclasses[n_Integer] := n!/(Times @@ #)& /@ ((#! Range[n]^#)& /@ Function[par, Count[par, #]& /@ Range[n]] /@ aspartitions[n]); row[n_] := ascycleclasses[n] // Reverse; Table[row[n], {n, 1, 8}] // Flatten (* Jean-Fran├žois Alcover, Feb 04 2014, after A036039 and Wouter Meeussen *)

CROSSREFS

Cf. A000041, A036039, A110141.

Sequence in context: A002130 A089145 A134199 * A031252 A208152 A194761

Adjacent sequences:  A102186 A102187 A102188 * A102190 A102191 A102192

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, Feb 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 08:41 EDT 2017. Contains 284146 sequences.