login
A123352
Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).
12
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 14, 14, 1, 1, 5, 30, 84, 42, 1, 1, 6, 55, 330, 594, 132, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
OFFSET
0,5
COMMENTS
There is another version in A078920. - Philippe Deléham, Apr 12 2007 [In other words, T(n,k) = A078920(n,n-k). - Petros Hadjicostas, Oct 19 2019]
LINKS
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
FORMULA
T(n, n-1) = A000108(n).
T(n, n-2) = A005700(n-1).
T(n, n-3) = A006149(n-2).
T(n, n-4) = A006150(n-3).
T(n, n-5) = A006151(n-4).
Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - Paul Barry, Jan 22 2009
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 14, 14, 1;
1, 5, 30, 84, 42, 1;
1, 6, 55, 330, 594, 132, 1;
1, 7, 91, 1001, 4719, 4719, 429, 1;
...
MATHEMATICA
A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}];
Table[A123352[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 17 2021 *)
PROG
(Sage)
def A123352(n, k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) )
flatten([[A123352(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
CROSSREFS
Diagonals give A000108, A005700, A006149, A006150, A006151, etc.
Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A000330 (k=2), A006858 (k=3), and A091962 (k=4).
T(2n,n) gives A358597.
Cf. A078920.
Sequence in context: A128198 A320031 A123349 * A114163 A189435 A279636
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 14 2006
EXTENSIONS
More terms from Philippe Deléham, Apr 12 2007
STATUS
approved