OFFSET
0,5
COMMENTS
There is another version in A078920. - Philippe Deléham, Apr 12 2007 [In other words, T(n,k) = A078920(n,n-k). - Petros Hadjicostas, Oct 19 2019]
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
FORMULA
T(n, n-1) = A000108(n).
T(n, n-2) = A005700(n-1).
T(n, n-3) = A006149(n-2).
T(n, n-4) = A006150(n-3).
T(n, n-5) = A006151(n-4).
Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - Paul Barry, Jan 22 2009
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 14, 14, 1;
1, 5, 30, 84, 42, 1;
1, 6, 55, 330, 594, 132, 1;
1, 7, 91, 1001, 4719, 4719, 429, 1;
...
MATHEMATICA
A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}];
Table[A123352[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 17 2021 *)
PROG
(Sage)
def A123352(n, k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) )
flatten([[A123352(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 14 2006
EXTENSIONS
More terms from Philippe Deléham, Apr 12 2007
STATUS
approved