login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078920 Upper triangle of Catalan Number Wall. 14
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 14, 4, 1, 1, 42, 84, 30, 5, 1, 1, 132, 594, 330, 55, 6, 1, 1, 429, 4719, 4719, 1001, 91, 7, 1, 1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1, 1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1, 1, 16796, 3711916, 37119160, 37119160, 6852768, 395352, 11628, 285, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
As square array: number of certain symmetric plane partitions, see Forrester/Gamburd paper.
Formatted as a square array, the column k gives the Hankel transform of the Catalan numbers (A000108) beginning at A000108(k); example: Hankel transform of [42, 132, 429, 1430, 4862, ...] is [42, 594, 4719, 26026, 111384, ...] (see A091962). - Philippe Deléham, Apr 12 2007
As square array T(n,k): number of all k-watermelons with a wall of length n. - Ralf Stephan, May 09 2007
Consider "Young tableaux with entries from the set {1,...,n}, strictly increasing in rows and not decreasing in columns. Note that usually the reverse convention between rows and columns is used." de Sainte-Catherine and Viennot (1986) proved that "the number b_{n,k} of such Young tableaux having only columns with an even number of elements and bounded by height p = 2*k" is given by b_{n,k} = Product_{1 <= i <= j <= n} (2*k + i + j)/(i + j)." It turns out that for the current array, T(n,k) = b(n-k,k) for n >= 0 and 0 <= k <= n. - Petros Hadjicostas, Sep 04 2019
As square array, b(k, n) = T(n+k-1, n) for k >= 1 and n >= 1 is the number of n-tuples P = (p_1, p_2, ..., p_n) of non-intersecting lattice paths that lie below the diagonal, such that each p_i starts at (i, i) and ends at (2n+k-i, 2n+k-i). (This is just a different way of looking at n-watermelons with a wall of length k since many of the steps of these paths are going to be fixed while the rest form an n-watermelon. See the Krattenthaler et al. paper.) Equivalently b(k, n) is the number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths, each with 2k steps such that for every i (1 <= i <= n-1), p_i is included in p_{i+1}. A Dyck path p is said to be included in a Dyck path q if the height of path p after j steps is at most the height of path q after j steps, for all j (1 <= j <= 2k). - Farzan Byramji, Jun 17 2021
LINKS
R. Bacher, Matrices related to the Pascal triangle, arXiv:math/0109013 [math.CO], 2001.
M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, arXiv:math/0503002 [math.CO], 2005.
P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, J. Combin. Theory Ser. A 113(6) (2006), 934-951.
M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, arXiv:math/0607163 [math.CO], 2006.
M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, Electron. J. Combin. 14 (2007), R64.
C. Krattenthaler, A. J. Guttman and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, J. Phys. A: Math. Gen. 33 (2000), 8835-8866.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A 155 (2018), 418-457.
FORMULA
T(n,k) = Product_{i=1..n-k} Product_{j=i..n-k} (i+j+2*k)/(i+j). [corrected by Petros Hadjicostas, Jul 24 2019]
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(n-k+1)!)*Product_{j=0..k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 14, 14, 4, 1;
1, 42, 84, 30, 5, 1;
1, 132, 594, 330, 55, 6, 1;
1, 429, 4719, 4719, 1001, 91, 7, 1;
1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1;
1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1;
...
MAPLE
T:= (n, k)-> mul(mul((i+j+2*k)/(i+j), j=i..n-k), i=1..n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
T[n_, k_] := Product[(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!, {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2015, adapted from PARI *)
PROG
(PARI) T(n, k)=if(k<0 || k>n, 0, prod(i=0, k-1, (2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!))
(PARI) {C(n)=if(n<0, 0, (2*n)!/n!/(n+1)!)}; T(n, k)=if(k<0 || k>n, 0, matdet(matrix(k, k, i, j, C(i+j-1+n-k))))
(Sage)
def A078920(n, k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..k-1) )
flattened([[A078920(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
CROSSREFS
Diagonals are A000027, A000330, A006858.
T(2n,n) gives A358597.
Cf. A123352.
Sequence in context: A288386 A062993 A105556 * A186020 A241579 A308292
KEYWORD
easy,nonn,tabl
AUTHOR
Michael Somos, Dec 15 2002
EXTENSIONS
T(0,0) = 1 prepended by Petros Hadjicostas, Jul 24 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 02:23 EDT 2024. Contains 371264 sequences. (Running on oeis4.)