The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122854 Expansion of phi(q)^2*psi(q)^4 in powers of q where phi(),psi() are Ramanujan theta functions. 3
 1, 8, 26, 48, 73, 120, 170, 208, 290, 360, 384, 528, 651, 656, 842, 960, 960, 1248, 1370, 1360, 1682, 1848, 1898, 2208, 2353, 2320, 2810, 3120, 2880, 3480, 3722, 3504, 4420, 4488, 4224, 5040, 5330, 5208, 5760, 6240, 5905, 6888, 7540, 6736, 7922, 8160, 7680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/2)eta(q^2)^18/(eta(q)^8*eta(q^4)^4) in powers of q. Euler transform of period 4 sequence [ 8, -10, 8, -6, ...]. a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^2)^(e+1)-1)/(p^2-1) if p == 1 (mod 4), b(p^e) = ((p^2)^(e+1)-(-1)^(e+1))/(p^2+1) if p == 3 (mod 4). G.f.: Sum_{k>0 odd} k^2*x^k/(1+x^(2k)) = Product_{k>0} (1-x^(2k))^6*(1+x^k)^8/(1+x^(2k))^4. MATHEMATICA a[n_]:= SeriesCoefficient[q^(-1/2)*(EllipticTheta[2, 0, q^(1/2)]^4 * EllipticTheta[3, 0, q]^2)/16, {q, 0, n}]; Table[A122854[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *) PROG (PARI) {a(n)= local(A, p, e, f); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, f=(-1)^(p\2); (p^(2*e+2)-f^(e+1))/(p^2-f)))))} (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^18/(eta(x+A)^8*eta(x^4+A)^4), n))} CROSSREFS A050458(2n+1)=A050470(2n+1)=a(n). Sequence in context: A031085 A224481 A031307 * A138502 A143894 A126176 Adjacent sequences:  A122851 A122852 A122853 * A122855 A122856 A122857 KEYWORD nonn AUTHOR Michael Somos, Sep 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2020. Contains 336434 sequences. (Running on oeis4.)