login
A122855
Expansion of (phi(q^3)phi(q^5) + phi(q)phi(q^15))/2 in powers of q where phi(q) is a Ramanujan theta function.
7
1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 0
OFFSET
0,9
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Alexander Berkovich and Hamza Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, The Ramanujan Journal, Vol. 20 (2009), pp. 375-408; arXiv preprint, arXiv:math/0611300 [math.NT], 2006-2007.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (eta(q^2)^2*eta(q^6)eta(q^10)eta(q^30)^2)/ (eta(q)eta(q^4)eta(q^15)eta(q^60)) in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e)=a(5^e)=1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1+(-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Euler transform of period 60 sequence [ 1, -1, 1, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 1, -2, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -4, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 0, 2, -1, 1, -1, 1, -2, 1, 0, 1, -2, 1, 0, 1, -1, 1, -2, ...].
Moebius transform is period 60 sequence [ 1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, -1, 0, 1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, -1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, -1, 0, ...].
a(15n+7) = a(15n+11) = a(15n+13) = a(15n+14) = 0.
a(3n) = a(5n) = a(n).
G.f.: 1 + Sum_{k>0} Kronecker(-15,k) x^k/(1-(-x)^k).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - Amiram Eldar, Nov 24 2023
EXAMPLE
1 + q + q^3 + q^4 + q^5 + 2*q^8 + q^9 + q^12 + q^15 + ...
MATHEMATICA
a[0] = 1; a[n_] := DivisorSum[n, KroneckerSymbol[-15, #]*(-1)^Boole[Mod[#, 4] == 2]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
PROG
(PARI) {a(n)=if(n<1, n==0, sumdiv(n, d, kronecker(-15, d)*(-1)^(d%4==2)))}
(PARI) {a(n)= local(A, p, e); if(n<1, n==0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, e-1, if(p<7, 1, if(p%15==2^valuation(p%15, 2), e+1, 1-e%2))))))}
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^6+A)*eta(x^10+A)*eta(x^30+A)^2/ (eta(x+A)*eta(x^4+A)*eta(x^15+A)*eta(x^60+A)), n))}
CROSSREFS
A035175(n) = a(4n).
Sequence in context: A359814 A359815 A260649 * A140727 A140728 A254110
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Sep 14 2006
STATUS
approved