This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122842 a(n) = k such that A038547[2n-1] = k^2. 2
 1, 3, 9, 27, 15, 243, 729, 45, 6561, 19683, 135, 177147, 225, 105, 4782969, 14348907, 1215, 675, 387420489, 3645, 3486784401, 10460353203, 315, 94143178827, 3375, 32805, 2541865828329, 6075, 98415, 68630377364883 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A038547[n] is least number with exactly n odd divisors. It appears that for n>1 a(n) is divisible by 3^m where m(n) = {0,1,2,3,1,5,6,2,8,9,3,11,2,1,14,15,5,...}. a(n) = 3^(n-1) for n = (p+1)/2, where p is odd prime. a(3k+2) = 5*3^k for k = {1,2,3,5,6,8,9,11,14,15,...} = A005097[n] (Odd primes - 1)/2. Thus a(3(p-1)/2 + 2) = 5*3^((p-1)/2). a(9k+5) = 3^k*5*7 for k ={1,2,3,5,...}. 3 divides a(2), 5 divides a(5), 7 divides a(14), 11 divides a(41), 13 divides a(122), etc. The first occurrence of the odd prime divisor Prime[n] among divisors of a(n) occurs at n = {2,5,14,41,122,...} = A007051[n-1] = (3^(n-1) + 1)/2 for n>1. Thus a(A007051[n-1]) = A070826[n] or a(3^(n-1) + 1)/2) = p(n)#/2 = A002110[n]/2 for n>1. LINKS R. J. Mathar, Table of n, a(n) for n = 1..1000 FORMULA a(n) = Sqrt[ A038547[2n-1] ]. a(n) = Sqrt[ A119265[2n-1,2n-1] ]. EXAMPLE A038547[n] begins {1,3,9,15,81,45,729,105,225,405,59049,315,...}. a(1) = 1 because A038547(1) = 1. a(2) = 3 because A038547(3) = 9. a(5) = 15 because A038547(9) = 225. CROSSREFS Cf. A038547, A121858, A001227, A005179, A119265. Cf. A007051, A070826, A002110. Sequence in context: A070359 A271015 A131997 * A070358 A321542 A321540 Adjacent sequences:  A122839 A122840 A122841 * A122843 A122844 A122845 KEYWORD nonn AUTHOR Alexander Adamchuk, Sep 13 2006, Sep 25 2006 EXTENSIONS More terms from R. J. Mathar, Sep 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 18:48 EDT 2019. Contains 327245 sequences. (Running on oeis4.)