login
A122845
Triangle read by rows, 3<=k<=n: T(n,k) = smallest prime p such that 2*k-p and 2*n-p are prime, T(n,k) = 0 if no such p exists.
2
3, 3, 3, 3, 3, 3, 0, 5, 5, 5, 3, 3, 3, 7, 3, 3, 3, 3, 5, 3, 3, 0, 5, 5, 5, 7, 5, 5, 3, 3, 3, 7, 3, 3, 7, 3, 3, 3, 3, 5, 3, 3, 5, 3, 3, 0, 5, 5, 5, 7, 5, 5, 7, 5, 5, 3, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 0, 5, 5, 5, 11, 5, 5, 17, 5, 5, 23, 5, 0, 0, 7, 7, 7, 11, 7, 7, 11, 7, 7, 11, 7, 3, 3, 3, 0, 3, 3, 13, 3, 3, 13
OFFSET
3,1
FORMULA
T(A098090(n),3) = 2*A098090(n) - A085090(A098090(n)-1) = 3.
MATHEMATICA
T[n_, k_] := Module[{p}, For[p = 2, p < 2n && p < 2k, p = NextPrime[p], If[PrimeQ[2n - p] && PrimeQ[2k - p], Return[p]]]; 0];
Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* Jean-François Alcover, Sep 22 2021 *)
CROSSREFS
Cf. A098090.
Sequence in context: A356002 A251551 A073139 * A135203 A251552 A324497
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Sep 14 2006
STATUS
approved