login
A122190
Expansion of q^(-1/4) * eta(q^2) * eta(q^5)^3 / (eta(q) * eta(q^10)) in powers of q.
3
1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 0, 2, 2, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 1, 2, 2, 0, 2, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2, 2, 4, 0, 0, 2, 0, 2, 2, 1, 2, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution product of A133100 and A133101. - Michael Somos, Feb 10 2015
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Euler transform of period 10 sequence [ 1, 0, 1, 0, -2, 0, 1, 0, 1, -2, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(5^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 - x^(5*k))^2 * (1 + x^k) / (1 + x^(5*k)).
G.f.: Sum_{k>=0} a(k) * x^(4k+1) = Sum_{k>0 odd} x^k * (1 - x^(2*k)) * (1 - x^(6*k)) / (1 + x^(10*k)).
Expansion of f(x, x^4) * f(x^2, x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of psi(x)^2 - x * psi(x^5)^2 in powers of x where psi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133573.
a(n) = A053694(4*n) = A094247(4*n + 1).
a(3*n + 2) = a(5*n + 1) = a(n). - Michael Somos, Feb 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/5 = 1.256637... (A019694). - Amiram Eldar, Dec 29 2023
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + x^11 + ...
G.f. = q + q^5 + q^9 + 2*q^13 + 2*q^17 + q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^5]^3 / (QPochhammer[ x] QPochhammer[ x^10]), {x, 0, n}]; (* Michael Somos, Feb 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^3 / (eta(x + A) * eta(x^10 + A)), n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 4*n + 1; A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==5, 1, if( p%4==1, e+1, (1 + (-1)^e) / 2))))))};
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Aug 24 2006
STATUS
approved