login
A133101
Expansion of f(x^2, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
FORMULA
The characteristic function of A057569.
Euler transform of period 10 sequence [ 0, 1, 1, -1, -1, -1, 1, 1, 0, -1, ...].
G.f.: Prod_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 2)) * (1 + x^(5*k - 3)) = Sum_{k in Z} x^((5*k^2 + k) / 2).
a(n) = abs(A113428(n)).
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^9 + x^11 + x^21 + x^24 + x^38 + x^42 + x^60 + x^65 + ...
G.f. = q + q^81 + q^121 + q^361 + q^441 + q^841 + q^961 + q^1521 + q^1681 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^5] QPochhammer[ -x^3, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^k*[ -1, 0, 1, 1, 0][k%5 + 1], 1 + x * O(x^n)), n))};
CROSSREFS
Sequence in context: A267878 A231367 A113428 * A258769 A266377 A266326
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 11 2007
STATUS
approved