login
A231367
a(n) = characteristic function of numbers k such that A024816(m) = k has solution, where A024816(m) = sums of non-divisors of m = antisigma(m).
5
1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
0
FORMULA
a(A231368(n)) = 1, a(A231369(n)) = 0.
a(n) = 1 if A024816(m) = n for any m, else 0.
a(n) = 1 for such n that A231366(n) >= 1, a(n) = 0 for such n that A231366(n) = 0.
EXAMPLE
a(2) = 1 because there is number m with antisigma(m) = 2; m = 3.
CROSSREFS
Cf.: A175192 (characteristic function of numbers k such that sigma(m) = k has solution), A231365, A231366, A231368, A231369.
Sequence in context: A152065 A267870 A267878 * A113428 A133101 A258769
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 09 2013
STATUS
approved