The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053694 Number of self-conjugate 5-core partitions of n. 5
 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 258 Entry 9(iii). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1-17. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA G.f.: product((1-q^(10*i))^2*(1-q^(10*i-5))*(1-q^(4*i-2))/((1-q^(2*i-1))*(1-q^(20*i-10))), i=1..200) a(n) = b(n + 1) where b(n) is multiplicative and b(2^e) = b(5^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 3, 7 (mod 8). Expansion of (phi(x)^2 - phi(x^5)^2) / (4*x) = chi(x) * f(-x^5) * f(-x^20) in powers of x where phi(), chi(), f() are Ramanujan theta functions. Expansion of q^(-1) * eta(q^2)^2 * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 25 2003 Euler transform of period 20 sequence [1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, ...]. - Michael Somos, Apr 25 2003 G.f.: Product_{k>0} (1 - x^(10*k))^2 * (1 + x^(2*k - 1)) / (1 + x^(10*k - 5)). - Michael Somos, Apr 25 2003 a(4*n) = A122190(n). EXAMPLE 1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + 2*x^12 + x^15 + 2*x^16 + x^17 + ... q + q^2 + q^4 + q^5 + q^8 + q^9 + q^10 + 2*q^13 + q^16 + 2*q^17 + q^18 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^2 - EllipticTheta[3, 0, q^5]^2) / (4 q), {q, 0, n}] (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ QPochhammer[-q, q^2] QPochhammer[q^5, q^5] QPochhammer[q^20, q^20], {q, 0, n}] (* Michael Somos, Jul 11 2011 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=0, n\2, 1 + x^(2*k + 1), 1 + x * O(x^n)) * prod( k=0, n\10, (1 - x^(10*k + 10))^2 / (1 + x^(10*k + 5)), 1 + x*O(x^n)), n))} (PARI) {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( -100, d)))} (PARI) {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -100, p) * X))[n])} (PARI) {a(n) = local(A); if(n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^20 + A) / eta(x + A) / eta(x^4 + A), n))} CROSSREFS Cf. A122190. Sequence in context: A059882 A303206 A094247 * A085862 A257392 A237123 Adjacent sequences:  A053691 A053692 A053693 * A053695 A053696 A053697 KEYWORD easy,nice,nonn AUTHOR James A. Sellers, Feb 14 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 21:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)