|
|
A122142
|
|
Numbers m such that m divides sum of 5th powers of the first m primes A122103(m).
|
|
3
|
|
|
1, 25, 837, 5129, 94375, 271465, 3576217, 3661659, 484486719, 2012535795, 31455148645, 95748332903, 145967218799, 165153427677
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
No other terms up to 10^8. - Stefan Steinerberger, Jun 06 2007
a(11) > 6*10^9. - Donovan Johnson, Oct 15 2012
a(13) > 10^11. - Robert Price, Mar 30 2013
a(15) > 10^12. - Paul W. Dyson, Jan 04 2021
|
|
LINKS
|
Table of n, a(n) for n=1..14.
OEIS Wiki, Sums of powers of primes divisibility sequences
|
|
EXAMPLE
|
a(2) = 25 because 25 is the first number n>1 that divides A122103[n] = Sum[ Prime[k]^5, {k,1,n} ].
Mod[ A122103[25], 25] = Mod[ 2^5 + 3^5 + 5^5 + ... + 89^5 + 97^5, 25 ] = 0.
|
|
MATHEMATICA
|
s = 0; t = {}; Do[s = s + Prime[n]^5; If[ Mod[s, n] == 0, AppendTo[t, n]], {n, 1000000}]; t
Module[{nn = 4*10^6}, Select[Thread[{Range[nn], Accumulate[ Prime[ Range[ nn]]^5]}], Divisible[#[[2]], #[[1]]] &]][[All, 1]] (* Generates the first 8 terms; to generate more, increase the value of nn, but the program may take a long time to run. *) (* Harvey P. Dale, Aug 26 2019 *)
|
|
CROSSREFS
|
Cf. A122103, A098999, A007504, A045345, A024450, A111441, A122102, A122140.
Sequence in context: A218479 A183879 A246761 * A151557 A008844 A251925
Adjacent sequences: A122139 A122140 A122141 * A122143 A122144 A122145
|
|
KEYWORD
|
nonn,hard
|
|
AUTHOR
|
Alexander Adamchuk, Aug 21 2006
|
|
EXTENSIONS
|
2 more terms from Stefan Steinerberger, Jun 06 2007
a(9)-a(10) from Donovan Johnson, Oct 15 2012
a(11)-a(12) from Robert Price, Mar 30 2013
a(13)-a(14) from Paul W. Dyson, Jan 04 2021
|
|
STATUS
|
approved
|
|
|
|