login
A251925
Prime powers p^k (k>=2) of the form (n^2+1)/2.
1
25, 841, 28561, 32959081, 1119638521, 1985636569351347658201, 3051519929713402294221039791281, 4689566069222821420312720463003656425961, 183840368926047361112315395593676258316051401, 17020879736268069268391497343746883355223007561030622302744641179601
OFFSET
1,1
COMMENTS
The corresponding n are a subsequence of A001333; see example.
LINKS
Joerg Arndt, Arctan relations for Pi (the author's starting point for this sequence).
EXAMPLE
The first few terms correspond to
7^2 + 1 = 2 * 5^2 = 2 * 25,
41^2 + 1 = 2 * 29^2 = 2 * 841,
239^2 + 1 = 2 * 13^4 = 2 * 28561,
8119^2 + 1 = 2 * 5741^2 = 2 * 32959081,
47321^2 + 1 = 2 * 33461^2 = 2 * 1119638521,
63018038201^2+1 = 2 * 44560482149^2 = 2 * 1985636569351347658201.
MATHEMATICA
With[{r=Range[100]}, Select[((ChebyshevT[r, I]/I^r)^2+1)/2, !PrimeQ[#]&&PrimePowerQ[#]&]] (* Paolo Xausa, Nov 13 2023, after Joerg Arndt *)
PROG
(PARI) forstep(n=1, 10^9, 2, t=(n^2+1)/2; if( !isprime(t) && isprimepower(t), print1(t, ", ")));
(PARI) /* much more efficient: */
{b(n) = polchebyshev(n, 1, I) / I^n}
for(n=1, 10^3, t=(b(n)^2+1)/2; if(!isprime(t)&&isprimepower(t), print1(t, ", ")));
CROSSREFS
Cf. A027861 (primes of the form (n^2+1)/2), A001333, A008844 (primes and composites with k=2).
Sequence in context: A122142 A151557 A008844 * A181892 A274469 A223258
KEYWORD
nonn
AUTHOR
Joerg Arndt, Dec 11 2014
STATUS
approved