login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A122016
Riordan array(1, x*(1+2*x)/(1-x)).
3
1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 3, 15, 9, 1, 0, 3, 24, 36, 12, 1, 0, 3, 33, 90, 66, 15, 1, 0, 3, 42, 171, 228, 105, 18, 1, 0, 3, 51, 279, 579, 465, 153, 21, 1, 0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1, 0, 3, 69, 576, 2172, 3858, 3258, 1344, 276, 27, 1
OFFSET
0,5
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,3,-2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Rising and falling diagonals are A078010 and A122552.
LINKS
Huyile Liang, Jinyang Zhang, and Yu Wang, Some properties of the matrix related to q-coloured coordination number, Filomat (2024) Vol. 38, No. 4, 1465-1477. See p. 1466.
FORMULA
Sum_{k=0..n} T(n,k)*x^(n-k) = A026150(n), A102900(n) for x = 1, 2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1). - Philippe Deléham, Sep 25 2006
G.f.: (1-x)/(1-(y+1)*x-2*y*x^2). - Philippe Deléham, Jan 31 2012
Sum_{k=0..n} T(n,k)*x^k = A117575(n+1), A000007(n), A026150(n), A122117(n), A147518(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 31 2012
EXAMPLE
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 3, 6, 1;
0, 3, 15, 9, 1;
0, 3, 24, 36, 12, 1;
0, 3, 33, 90, 66, 15, 1;
0, 3, 42, 171, 228, 105, 18, 1;
0, 3, 51, 279, 579, 465, 153, 21, 1;
0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1;
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[(1-x)/(1-(y+1)*x-2*y*x^2), {x, 0, n}, {y, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Stefano Spezia, Dec 27 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 24 2006
EXTENSIONS
More terms from Stefano Spezia, Dec 27 2023
STATUS
approved