

A120269


Numerator of Sum_{k=1..n} 1/(2k1)^4.


5



1, 82, 51331, 123296356, 9988505461, 146251554055126, 4177234784807204311, 4177316109293528392, 348897735816424941428857, 45469045689642442391390873722, 45469276109166591994111574347
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a((p1)/2) is divisible by prime p > 5.
Denominators are in A128493.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k1)^4, for n > infinity, is (Pi^4)/96 = (1  1/2^4)*zeta(4), which is approximately 1.014678032.
r(n) = (Psi(3, 1/2)  Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4.  JeanFrançois Alcover, Dec 02 2013


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..293
W. Lang, Rationals and limit.


MATHEMATICA

Numerator[Table[Sum[1/(2k1)^4, {k, 1, n}], {n, 1, 20}]]
Table[(PolyGamma[3, 1/2]  PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* JeanFrançois Alcover, Dec 02 2013 *)


PROG

(PARI) for(n=1, 20, print1(numerator(sum(k=1, n, 1/(2*k1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018
(MAGMA) [Numerator((&+[1/(2*k1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018


CROSSREFS

Cf. A007410, A013662, A025550.
Sequence in context: A204976 A204703 A206648 * A291586 A015077 A015040
Adjacent sequences: A120266 A120267 A120268 * A120270 A120271 A120272


KEYWORD

nonn,frac


AUTHOR

Alexander Adamchuk, Jul 01 2006


STATUS

approved



