

A120270


The numerator of determinant of n X n matrix with elements M[i,j] = 1/(Prime[i] + Prime[j]), i,j=1..n.


0



1, 1, 3, 1, 1, 11, 1, 17, 1, 1, 29, 29, 1, 41, 41, 4913, 17, 59, 59, 1, 71, 71, 1, 1, 1, 1, 101, 101, 10807, 1, 1, 1, 1, 137, 137, 20413, 20413, 20413, 1, 1, 1, 179, 1, 191, 191, 37627, 37627, 37627, 191, 43357, 227, 227, 54253, 227, 1, 1, 1, 269, 269, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Many a(n) are equal to 1. It appeares that almost all other a(n) are primes that belong to the Lesser of Twin Primes A001359(k) or equal to the product of two primes from A001359(k), mostly consecutive. a(16) = 17^3 is an exception  it is a cube of a prime from A001359(k). All lesser twin primes from A001359(k) except 5 appear in a(n) for the first time in their natural order. 5 is the only lesser twin prime that does not appear in a(n). If p=Prime[n]>5 is lesser of twin primes then p divides a(n+1).


LINKS

Table of n, a(n) for n=1..60.


FORMULA

a(n) = numerator[ Det[ 1/(Prime[i] + Prime[j]), {i,1,n},{j,1,n} ]].


EXAMPLE

Matrix begins
1/4 1/5 1/7 1/9 ...
1/5 1/6 1/8 1/10 ...
1/7 1/8 1/10 1/12 ...
1/9 1/10 1/12 1/14 ...
...


MATHEMATICA

Numerator[Table[Det[Table[1/(Prime[i]+Prime[j]), {i, 1, n}, {j, 1, n}]], {n, 1, 60}]]


CROSSREFS

Cf. A001359.
Sequence in context: A086766 A078688 A082466 * A243752 A113711 A257894
Adjacent sequences: A120267 A120268 A120269 * A120271 A120272 A120273


KEYWORD

frac,nonn


AUTHOR

Alexander Adamchuk, Jul 01 2006


STATUS

approved



