This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119706 Numerator of expected value of the longest run of heads in n tosses of a fair coin. The denominator is 2^n. 3
 1, 4, 11, 27, 62, 138, 300, 643, 1363, 2866, 5988, 12448, 25770, 53168, 109381, 224481, 459742, 939872, 1918418, 3910398, 7961064, 16190194, 32893738, 66772387, 135437649, 274518868, 556061298, 1125679616, 2277559414, 4605810806, 9309804278, 18809961926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is also the sum of the number of binary words with at least one run of consecutive 0's of length >= i for i>=1.  In other words A000225 + A008466 + A050231 + A050232 + ... . - Geoffrey Critzer, Jan 12 2013 REFERENCES A. M. Odlyzko, Asymptotic Enumeration Methods, pp. 136-137 R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 372. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA a(n+1) = 2*a(n) + A007059(n+2) a(n) > 2*a(n-1). a(n)=sum(i=1..(2^n)-1, A038374(i) ). - R. J. Mathar, Jun 15 2006 O.g.f.: sum(k>=1, 1/(1-2*x) - (1-x^k)/(1-2*x-x^(k+1)) ). a(n) = sum(k=1..n, A048004(n,k) * k ). - Geoffrey Critzer, Jan 12 2013 EXAMPLE a(3)=11 because for the 8(2^3) possible runs 0 is longest run of heads once, 1 four times, 2 two times and 3 once and 0*1+1*4+2*2+3*1=11. MAPLE A038374 := proc(n) local nshft, thisr, resul; nshft := n ; resul :=0 ; thisr :=0 ; while nshft > 0 do if nshft mod 2 <> 0 then thisr := thisr+1 ; else resul := max(resul, thisr) ; thisr := 0 ; fi ; nshft := floor(nshft/2) ; od ; resul := max(resul, thisr) ; RETURN(resul) ; end : A119706 := proc(n) local count, c, rlen ; count := array(0..n) ; for c from 0 to n do count[c] := 0 ; od ; for c from 0 to 2^n-1 do rlen := A038374(c) ; count[rlen] := count[rlen]+1 ; od ; RETURN( sum('count[c]*c', 'c'=0..n) ); end: for n from 1 to 40 do print(n, A119706(n)) ; od : - R. J. Mathar, Jun 15 2006 # second Maple program: b:= proc(n, m) option remember; `if`(n=0, 1,       `if`(m=0, add(b(n-j, j), j=1..n),       add(b(n-j, min(n-j, m)), j=1..min(n, m))))     end: a:= proc(n) option remember;      `if`(n=1, 1, 2*a(n-1) +b(n, 0))     end: seq(a(n), n=1..40);  # Alois P. Heinz, Dec 19 2014 MATHEMATICA nn=10; Drop[Apply[Plus, Table[CoefficientList[Series[1/(1-2x)-(1-x^n)/(1-2x+x^(n+1)), {x, 0, nn}], x], {n, 1, nn}]], 1]  (* Geoffrey Critzer, Jan 12 2013 *) CROSSREFS Sequence in context: A192965 A035593 A160399 * A034345 A036890 A000253 Adjacent sequences:  A119703 A119704 A119705 * A119707 A119708 A119709 KEYWORD nonn,changed AUTHOR Adam Kertesz (adamkertesz(AT)att.net), Jun 09 2006, Jun 13 2006 EXTENSIONS More terms from R. J. Mathar, Jun 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .