login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000253 a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1). 2
0, 1, 4, 11, 27, 63, 142, 312, 673, 1432, 3015, 6295, 13055, 26926, 55284, 113081, 230572, 468883, 951347, 1926527, 3894878, 7863152, 15855105, 31936240, 64269135, 129234351, 259690239, 521524126, 1046810092, 2100221753, 4212028452, 8444387067 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Holger Petersen (petersen(AT)informatik.uni-stuttgart.de), May 29 2006:  (Start)

Also number of binary strings of length n+2 containing the pattern 010. Proof: Clear for n = 0, 1, 2. For n > 2 each string with pattern 010 of length n-1 gives 2 strings of length n with the property by appending a symbol. In addition each string of length n-1 without 010 and ending in 01 contributes one new string. Denote by c_w(m) the number of strings of length m without 010 and ending in w.

Since there is a total of 2^m strings of length m, we have c_01(m) = c_0(m-1) = (2^{m-1} - a(m-3)) - c_1(m-1) = (2^{m-1} - a(m-3)) - (2^{m-2} - a(m-4)) = 2^{m-2} - a(m-3) + a(m-4) (the first and third equalities follow from the fact that appending a 1 will not generate the pattern). The recurrence is a(n) = 2a(n-1) + c_01(n+1) = 2a(n-1) + 2^{n-1} - a(n-2) + a(n-3).

(End)

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Stack Exchange, Recurrence relations - binary substrings

Index to sequences with linear recurrences with constant coefficients, signature (4,-5,3,-2).

FORMULA

a(n) = (1/3) *(4*2^n + A077941(n-1) - 2*A077941(n+1)). G.f.: x/((1-2*x)*(1-2*x+x^2-x^3)). - Ralf Stephan, Aug 19 2004

a(n) = A000079(n+2) - A005251(n+5). Alois P. Heinz, Apr 03 2012

MAPLE

f := proc(n) option remember; if n<=1 then n else if n<=3 then 7*n-10; else 2*f(n-1)-f(n-2)+f(n-3)+2^(n-1); fi; fi; end;

MATHEMATICA

nn=50; a=x^2/(1-x)^2; Drop[CoefficientList[Series[a x/(1-a x)/(1-2x), {x, 0, nn}], x], 2] (* Geoffrey Critzer, Nov 26 2013 *)

CROSSREFS

Sequence in context: A119706 A034345 A036890 * A047859 A100335 A080869

Adjacent sequences:  A000250 A000251 A000252 * A000254 A000255 A000256

KEYWORD

nonn

AUTHOR

Jason Howald (jahowald(AT)umich.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 01:41 EST 2014. Contains 250286 sequences.