login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000253 a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 2^(n-1). 2
0, 1, 4, 11, 27, 63, 142, 312, 673, 1432, 3015, 6295, 13055, 26926, 55284, 113081, 230572, 468883, 951347, 1926527, 3894878, 7863152, 15855105, 31936240, 64269135, 129234351, 259690239, 521524126, 1046810092, 2100221753, 4212028452, 8444387067 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Holger Petersen (petersen(AT)informatik.uni-stuttgart.de), May 29 2006:  (Start)

Also number of binary strings of length n+2 containing the pattern 010. Proof: Clear for n = 0, 1, 2. For n > 2 each string with pattern 010 of length n-1 gives 2 strings of length n with the property by appending a symbol. In addition each string of length n-1 without 010 and ending in 01 contributes one new string. Denote by c_w(m) the number of strings of length m without 010 and ending in w.

Since there is a total of 2^m strings of length m, we have c_01(m) = c_0(m-1) = (2^{m-1} - a(m-3)) - c_1(m-1) = (2^{m-1} - a(m-3)) - (2^{m-2} - a(m-4)) = 2^{m-2} - a(m-3) + a(m-4) (the first and third equalities follow from the fact that appending a 1 will not generate the pattern). The recurrence is a(n) = 2a(n-1) + c_01(n+1) = 2a(n-1) + 2^{n-1} - a(n-2) + a(n-3).

(End)

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Maths Stack Exchange, Recurrence relations - binary substrings

Index entries for linear recurrences with constant coefficients, signature (4,-5,3,-2).

FORMULA

a(n) = (1/3) *(4*2^n + A077941(n-1) - 2*A077941(n+1)). G.f.: x/((1-2*x)*(1-2*x+x^2-x^3)). - Ralf Stephan, Aug 19 2004

a(n) = A000079(n+2) - A005251(n+5). Alois P. Heinz, Apr 03 2012

MAPLE

f := proc(n) option remember; if n<=1 then n else if n<=3 then 7*n-10; else 2*f(n-1)-f(n-2)+f(n-3)+2^(n-1); fi; fi; end;

MATHEMATICA

nn=50; a=x^2/(1-x)^2; Drop[CoefficientList[Series[a x/(1-a x)/(1-2x), {x, 0, nn}], x], 2] (* Geoffrey Critzer, Nov 26 2013 *)

LinearRecurrence[{4, -5, 3, -2}, {0, 1, 4, 11}, 32] (* Jean-Fran├žois Alcover, Feb 06 2016 *)

CROSSREFS

Sequence in context: A119706 A034345 A036890 * A276691 A047859 A100335

Adjacent sequences:  A000250 A000251 A000252 * A000254 A000255 A000256

KEYWORD

nonn

AUTHOR

Jason Howald (jahowald(AT)umich.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 21:33 EST 2016. Contains 278755 sequences.