login
A119705
Primes p such that the number of divisors of p+1 equals number of divisors of p+2.
4
13, 37, 43, 97, 103, 157, 229, 241, 331, 373, 433, 541, 547, 877, 907, 1021, 1129, 1201, 1373, 1381, 1433, 1489, 1543, 1597, 1613, 1621, 1741, 1831, 1951, 1987, 2017, 2053, 2161, 2377, 2503, 2539, 2557, 2633, 2677, 2713, 2857, 2953, 3061, 3067, 3109, 3169
OFFSET
1,1
COMMENTS
Primes p such that A008329(p) = A049234(p).
LINKS
EXAMPLE
13 is a term because 14 and 15 each have 4 divisors: {1, 2, 7, 14} and {1, 3, 5, 15}.
MATHEMATICA
Select[Range[3200], PrimeQ[#] && DivisorSigma[0, # + 1] == DivisorSigma[0, # + 2] &] (* Amiram Eldar, Jan 26 2020 *)
PROG
(PARI) isok(n) = isprime(n) && (numdiv(n+1) == numdiv(n+2)); \\ Michel Marcus, Oct 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 29 2006
STATUS
approved