login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118196 Column 0 of the matrix inverse of triangle A117401(n,k) = (2^k)^(n-k). 2
1, -1, 1, -1, -1, 31, -449, 4223, 377087, -79232513, 13509592063, -74458331137, -5113818652864513, 11766261105083555839, -22128578595003966668801, -88147548436159218430476289, 3787186430286106428653327941631, -103331603080469761480767867413463041 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
The entire matrix inverse of triangle A117401 is determined by column 0 (this sequence): [A117401^-1](n,k) = a(n-k)*2^(k*(n-k)) for n>=k>=0. Any g.f. of the form: Sum_{k>=0} b(k)*x^k may be expressed as: Sum_{n>=0} c(n)*x^n/(1-2^n*x) by applying the inverse transformation: c(n) = Sum_{k=0..n} a(n-k)*b(k)*2^(k*(n-k)).
LINKS
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-2^n*x).
0^n = Sum_{k=0..n} a(k)*2^(k*(n-k)) for n>=0.
a(n) = (-1)*Sum_{j=0..n-1} 2^(j*(n-j))*a(j) with a(0) = 1 and a(1) = -1. - G. C. Greubel, Jun 30 2021
From Geoffrey Critzer, May 08 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^k*A335330(n,k).
Sum_{n>=0} a(n)*z^n/A006125(n) = 1/E(z) where E(z) = Sum_{n>=0} z^n/A006125(n). (End)
EXAMPLE
Recurrence at n=4:
0 = a(0)*(2^0)^4 +a(1)*(2^1)^3 +a(2)*(2^2)^2 +a(3)*(2^3)^1 +a(4)*(2^4)^0 = 1*(2^0) - 1*(2^3) + 1*(2^4) - 1*(2^3) - 1*(2^0).
The g.f. is illustrated by:
1 = 1/(1-x) -1*x/(1-2*x) +1*x^2/(1-4*x) -1*x^3/(1-8*x) -1*x^4/(1-16*x) +31*x^5/(1-32*x) -449*x^6/(1-64*x) + 4223*x^7/(1-128*x) +...
MATHEMATICA
(* First program *)
m = 17;
M = Table[If[k <= n, 2^((n-k)k), 0], {n, 0, m}, {k, 0, m}];
Inverse[M][[All, 1]] (* Jean-François Alcover, Jun 13 2019 *)
(* Second program *)
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[2^(j*(n-j))*a[j], {j, 0, n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 30 2021 *)
PROG
(PARI) {a(n) = local(T=matrix(n+1, n+1, r, c, if(r>=c, (2^(c-1))^(r-c)))); return((T^-1)[n+1, 1])};
(Sage)
def A118196_list(len):
R, C = [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = C[k-1] / (2^k)
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0]*2^(n*(n+1)/2))
return R
print(A118196_list(18)) # Peter Luschny, Feb 20 2016
(Sage)
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(2^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 30 2021
CROSSREFS
Sequence in context: A084234 A187622 A187630 * A160443 A125466 A142280
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:11 EDT 2024. Contains 371935 sequences. (Running on oeis4.)