OFFSET
0,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..80
FORMULA
G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-2^n*x).
By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118196(n-k)*2^(k*(n-k)) for n>=0.
a(2^n) is divisible by 2^n.
G.f.: Sum_{n>=1} a(n)*x^n/[n*2^(n(n-1)/2)] = log(Sum_{n>=0} x^n/2^[n(n-1)/2]).
EXAMPLE
Column 0 of log(A117401) = [0, 1, 0, -1/3, 4/4, -11/5, -186/6, ...] and
consists of terms a(n)/n (n>0); these terms are integers at n = [0, 1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 32, 34, 38, 46, 50, 58, 62, 64, 70, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 +... = x/(1-2*x) - 0*x^2/(1-4*x) - 1*x^3/(1-8*x) + 4*x^4/(1-16*x) - 11*x^5/(1-32*x) - 186*x^6/(1-64*x) + 10823*x^7/(1-128*x) + ...
Define g.f.: G(x) = Sum_{n>=1} a(n)*x^n/[n * 2^(n(n-1)/2)], then G(x) = x + 0*x^2/4 - x^3/24 + 4*x^4/256 - 11*x^5/5120 - 186*x^6/196608 + ... and exp(G(x)) = 1 + x + x^2/2 + x^3/8 + x^4/64 + x^5/1024 + x^6/32768 + ...
MATHEMATICA
a[n_]:= a[n]= -Sum[2^(j*(n-j))*j*A118196[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 30 2021 *)
PROG
(PARI) {a(n) = local(T=matrix(n+1, n+1, r, c, if(r>=c, (2^(c-1))^(r-c))), L=sum(m=1, #T, -(T^0-T)^m/m)); return(n*L[n+1, 1])};
(PARI) {a(n)=n*2^(n*(n-1)/2)*polcoeff(log(sum(k=0, n, x^k/2^(k*(k-1)/2))+x*O(x^n)), n)}
(Sage)
@CachedFunction
def a(n): return (-1)*sum(2^(j*(n-j))*j*A118196(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 30 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006, Oct 30 2007
STATUS
approved