login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118194 Column 0 of the matrix log of triangle A118190, after term in row n is multiplied by n: a(n) = n*[log(A118190)](n,0), where A118190(n,k) = (5^k)^(n-k). 1
0, 1, -3, 53, -4871, 2262505, -5269940619, 61424345593757, -3580474937256484367, 1043606492389898678125009, -1520932783784930699920673828115, 11082945991224258678496051788222656261, -403804307486446123171767495567989349951171863 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The entire matrix log of triangle A118190 is determined by column 0 (this sequence): [log(A118190)](n,k) = a(n-k)/(n-k)*(5^k)^(n-k) for n>k>=0.

LINKS

Table of n, a(n) for n=0..12.

FORMULA

G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-5^n*x). By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118193(n-k)*(5^k)^(n-k) for n>=0.

EXAMPLE

Column 0 of log(A118190) = [0, 1, -3/2, 53/3, -4871/4, ...].

The g.f. is illustrated by:

x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 +...

= x/(1-5*x) -3*x^2/(1-25*x) +53*x^3/(1-125*x) -4871*x^4/(1-625*x) + 2262505*x^5/(1-3125*x) - 5269940619*x^6/(1-15625*x) +...

PROG

(PARI) {a(n)=local(T=matrix(n+1, n+1, r, c, if(r>=c, (5^(c-1))^(r-c))), L=sum(m=1, #T, -(T^0-T)^m/m)); return(n*L[n+1, 1])}

CROSSREFS

Cf. A118190.

Sequence in context: A098932 A100444 A227051 * A173357 A144537 A208631

Adjacent sequences:  A118191 A118192 A118193 * A118195 A118196 A118197

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 14:52 EDT 2017. Contains 288790 sequences.