OFFSET
0,5
COMMENTS
Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118193(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118194(n-k)*T(n,k).
For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-5^n*x).
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
G.f.: A(x,y) = Sum_{n>=0} x^n/(1-5^n*x*y).
G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,5*y).
T(n,k) = (1/n)*( 5^(n-k)*k*T(n-1,k-1) + 5^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 21 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 3. - G. C. Greubel, Jun 29 2021
EXAMPLE
A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 25, 25, 1;
1, 125, 625, 125, 1;
1, 625, 15625, 15625, 625, 1;
1, 3125, 390625, 1953125, 390625, 3125, 1;
1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...
The matrix inverse T^-1 starts:
1;
-1, 1;
4, -5, 1;
-76, 100, -25, 1;
7124, -9500, 2500, -125, 1;
-3326876, 4452500, -1187500, 62500, -625, 1; ...
where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).
MATHEMATICA
With[{m=3}, Table[(m+2)^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, (5^k)^(n-k) )
(Magma) [5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021
(Sage) flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved