OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 3.
T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 3.
T(n, k, m) = (m+2)^(k*(n-k)) with m = 13. - G. C. Greubel, Jun 30 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 225, 225, 1;
1, 3375, 50625, 3375, 1;
1, 50625, 11390625, 11390625, 50625, 1;
1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1;
MATHEMATICA
(* First program *)
T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k));
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 30 2021 *)
(* Second program *)
With[{m=13}, Table[(m+2)^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jun 30 2021 *)
PROG
(Magma) [(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 30 2021
(Sage) flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 30 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 22 2010
EXTENSIONS
Edited by G. C. Greubel, Jun 30 2021
STATUS
approved