This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176793 A symmetrical triangle:q=2;f(n,m,q)=Sum[q^((k - 1)/2)*Binomial[n, m], {m, 1, n, 2}];t(n,m,q)=1 - (f(n, k, q) + f(n, 2*n - k, q) - (f(n, 1, q) + f(n, 2*n - 1, q))) 0
 1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 113, 145, 113, 1, 1, 481, 673, 673, 481, 1, 1, 1985, 2881, 3137, 2881, 1985, 1, 1, 8065, 11905, 13441, 13441, 11905, 8065, 1, 1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1, 1, 130561, 195073, 225793, 238081, 238081 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 7, 52, 373, 2310, 12871, 66824, 330505, 1579018,...}. LINKS FORMULA q=2; f(n,m,q)=Sum[q^((k - 1)/2)*Binomial[n, m], {m, 1, n, 2}]; t(n,m,q)=1 - (f(n, k, q) + f(n, 2*n - k, q) - (f(n, 1, q) + f(n, 2*n - 1, q))) EXAMPLE {1}, {1, 1}, {1, 5, 1}, {1, 25, 25, 1}, {1, 113, 145, 113, 1}, {1, 481, 673, 673, 481, 1}, {1, 1985, 2881, 3137, 2881, 1985, 1}, {1, 8065, 11905, 13441, 13441, 11905, 8065, 1}, {1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1}, {1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561, 1} MATHEMATICA f[n_, k_, q_] := Sum[q^((k - 1)/2)*Binomial[n, m], {m, 1, n, 2}]; t[n_, k_, q_] := 1 - (f[n, k, q] + f[n, 2*n - k, q] - (f[n, 1, q] + f[n, 2* n - 1, q])); Table[Flatten[Table[Table[t[ n, k, q], {k, 1, 2*n, 2}], {n, 1, 10}]], {q, 2, 10}] CROSSREFS Sequence in context: A156600 A152572 A203346 * A118190 A172342 A143213 Adjacent sequences:  A176790 A176791 A176792 * A176794 A176795 A176796 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Apr 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 02:00 EDT 2019. Contains 328105 sequences. (Running on oeis4.)