login
A116978
Cubes whose multiplicative digital root is also a cube.
3
0, 1, 8, 64, 125, 343, 512, 1000, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 13824, 15625, 17576, 19683, 21952, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649
OFFSET
1,3
COMMENTS
Presumably a(n) ~ n^3. Up to 10^6 there are 14 missing cubes, up to 10^9 there are 36, up to 10^12 there are 81, up to 10^15 there are 155, up to 10^18 there are 267, up to 10^21 there are 517, and up to 10^24 there are 846. - Charles R Greathouse IV, Nov 17 2015
LINKS
Eric Weisstein's World of Mathematics, Multiplicative Digital Root.
FORMULA
a(n) >= A052044(n)^3 for n > 3. - Charles R Greathouse IV, Nov 17 2015
MAPLE
A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A116978 := proc(n) option remember: local k, m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^3: while(length(m)>1)do m:=A007954(m): od: if(m in {0, 1, 8})then return k: fi: od: end: seq(A116978(n)^3, n=1..50); # Nathaniel Johnston, May 05 2011
MATHEMATICA
fQ[n_] := IntegerQ[ FixedPoint[Times @@ IntegerDigits@# &, n]^(1/3)]; Select[Range[0, 48]^3, fQ@# &] (* Robert G. Wilson v, Apr 03 2006 *)
PROG
(PARI) t(k)=while(k>9, k=prod(i=1, #k=digits(k), k[i])); k
for(n=0, 200, if(ispower(t(n^3), 3), print1(n^3, ", "))); \\ Altug Alkan, Oct 22 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 01 2006
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Apr 03 2006
STATUS
approved