login
A235425
Numbers k such that between k and the next prime there are gpf(k) numbers, where gpf(k) denotes the largest prime factor of k.
3
8, 64, 128, 625, 729, 1701, 2625, 3025, 4096, 6435, 8505, 10115, 12675, 14641, 17303, 19343, 19683, 19845, 21125, 25515, 25725, 26325, 26741, 27783, 32768, 33075, 33275, 34075, 35721, 38025, 39375, 42525, 43875, 50193, 59319, 60835, 61731, 70805, 75411, 75803
OFFSET
1,1
LINKS
EXAMPLE
64 = 2^6, whose largest prime factor is 2, is in the sequence because between 64 and 67 (the next prime) there are 2 numbers, 65 and 66.
MATHEMATICA
Select[Range[10^5], NextPrime[#] - # == 1 + FactorInteger[#][[-1, 1]] &]
PROG
(PARI) gpf(n)=n=factor(n)[, 1]; n[#n]
is(n)=nextprime(n)-n==gpf(n)+1 \\ Charles R Greathouse IV, Jan 10 2014
CROSSREFS
Sequence in context: A116978 A125110 A209990 * A255932 A043152 A044195
KEYWORD
nonn
AUTHOR
Giovanni Resta, Jan 10 2014
STATUS
approved