login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031347 Multiplicative digital root of n (keep multiplying digits of n until reaching a single digit). 48
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 2, 8, 4, 0, 4, 8, 2, 6, 0, 8, 6, 6, 8, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 6, 2, 8, 8, 0, 8, 8, 6, 0, 0, 7, 4, 2, 6, 5, 8, 8, 0, 8, 0, 8, 6, 8, 6, 0, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = 0 for almost all n. - Charles R Greathouse IV, Oct 02 2013

More precisely, a(n) = 0 asymptotically almost surely, namely, among others, for all numbers n which have a digit '0', and as n has more and more digits, it becomes increasingly less probable that no digit is equal to zero. (The set A011540 has density 1.) Thus the density of numbers for which a(n) > 0 is zero, although this happens for infinitely many numbers, for example all repunits n = (10^k-1)/9 = A002275(k). - M. F. Hasler, Oct 11 2015

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Multiplicative Digital Root.

Index entries for Colombian or self numbers and related sequences

FORMULA

a(n) = d in {1,...,9} if (but not only if) n = (10^k-1)/9 + (d-1)*10^m = A002275(k) + (d-1)*A011557(m) for some k > m >= 0. - M. F. Hasler, Oct 11 2015

MAPLE

A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: seq(A031347(n), n=0..100); # Nathaniel Johnston, May 04 2011

MATHEMATICA

mdr[n_] := NestWhile[Times @@ IntegerDigits@# &, n, UnsameQ, All]; Table[ mdr[n], {n, 0, 104}] (* Robert G. Wilson v, Aug 04 2006 *)

PROG

(PARI) A031347(n)=local(resul); if(n<10, return(n) ); resul = n % 10; n = (n - n%10)/10; while( n > 0, resul *= n %10; n = (n - n%10)/10; ); return(A031347(resul))

for(n=1, 80, print1(A031347(n), ", ")) \\ R. J. Mathar, May 23 2006

(PARI) A031347(n)={while(n>9, n=prod(i=1, #n=digits(n), n[i])); n} \\ M. F. Hasler, Dec 07 2014

(Haskell)

a031347 = until (< 10) a007954

-- Reinhard Zumkeller, Oct 17 2011, Sep 22 2011

(Python)

from operator import mul

from functools import reduce

def A031347(n):

....while (n > 9):

........n = reduce(mul, (int(d) for d in str(n)))

....return n

# Chai Wah Wu, Aug 23 2014

CROSSREFS

Cf. A007954, A007953, A003001, A010888 (additive digital root of n), A031286 (additive persistence of n), A031346 (multiplicative persistence of n).

Numbers having multiplicative digital roots 0-9: A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056.

Sequence in context: A175421 A175420 A062078 * A087471 A128212 A187844

Adjacent sequences:  A031344 A031345 A031346 * A031348 A031349 A031350

KEYWORD

nonn,base,easy,nice

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 00:38 EST 2017. Contains 294837 sequences.