login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114647
Expansion of (3 -4*x -3*x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.
5
3, 2, 7, 12, 31, 70, 171, 408, 987, 2378, 5743, 13860, 33463, 80782, 195027, 470832, 1136691, 2744210, 6625111, 15994428, 38613967, 93222358, 225058683, 543339720, 1311738123, 3166815962, 7645370047, 18457556052, 44560482151, 107578520350, 259717522851
OFFSET
0,1
COMMENTS
Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e
FORMULA
G.f.: (3 -4*x -3*x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(n) = A000129(n+1) + 2*A059841(n). - R. J. Mathar, Nov 10 2009
From Colin Barker, May 26 2016: (Start)
a(n) = 1 + (-1)^n + ((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3. (End)
a(n) = A000129(n+1) + 1 + (-1)^n. - G. C. Greubel, May 24 2021
MATHEMATICA
Table[Fibonacci[n+1, 2] +1+(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
PROG
(PARI) Vec((3-4*x-3*x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, May 26 2016
(Magma) I:=[3, 2, 7, 12]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
(Sage) [lucas_number1(n+1, 2, -1) +(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 18 2006
STATUS
approved