login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114688 Expansion of (-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)); a Pellian-related sequence. 5
1, 5, 11, 30, 71, 175, 421, 1020, 2461, 5945, 14351, 34650, 83651, 201955, 487561, 1177080, 2841721, 6860525, 16562771, 39986070, 96534911, 233055895, 562646701, 1358349300, 3279345301, 7917039905, 19113425111, 46143890130, 111401205371, 268946300875 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).

FORMULA

a(0)=1, a(1)=5, a(2)=11, a(3)=30, a(n)=2*a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Dec 18 2012

a(n) = (-6-6*(-1)^n-5*sqrt(2)*((1-sqrt(2))^(1+n)-(1+sqrt(2))^(1+n)))/8. - Colin Barker, May 26 2016

MATHEMATICA

CoefficientList[Series[(-1-3x+x^2)/((1-x)(x+1)(x^2+2x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 5, 11, 30}, 40] (* Harvey P. Dale, Dec 18 2012 *)

PROG

(PARI) Vec((-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 26 2016

CROSSREFS

Cf. A100828, A114647, A114689, A114695, A114696, A114697, A000129.

Sequence in context: A179256 A209659 A266820 * A257717 A192194 A239842

Adjacent sequences:  A114685 A114686 A114687 * A114689 A114690 A114691

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Feb 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 03:28 EDT 2017. Contains 287242 sequences.