OFFSET
0,2
COMMENTS
Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
FORMULA
G.f.: (1 +3*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=5, a(2)=11, a(3)=30, a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4). - Harvey P. Dale, Dec 18 2012
a(n) = (-6 - 6*(-1)^n + 5*sqrt(2)*( (1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n) ))/8. - Colin Barker, May 26 2016
a(n) = (10*A000129(n+1) - 3*(1 + (-1)^n))/4. - G. C. Greubel, May 24 2021
MAPLE
Pell:= proc(n) option remember;
if n<2 then n
else 2*Pell(n-1) + Pell(n-2)
fi; end:
seq((10*Pell(n+1) -3*(1+(-1)^n))/4, n=0..40); # G. C. Greubel, May 24 2021
MATHEMATICA
CoefficientList[Series[(-1-3x+x^2)/((1-x)(x+1)(x^2+2x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 5, 11, 30}, 40] (* Harvey P. Dale, Dec 18 2012 *)
PROG
(PARI) Vec((-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 26 2016
(Magma) I:=[1, 5, 11, 30]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
(Sage) [(10*lucas_number1(n+1, 2, -1) -3*(1+(-1)^n))/4 for n in (0..30)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 18 2006
STATUS
approved