login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114688 Expansion of (-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)); a Pellian-related sequence. 5
1, 5, 11, 30, 71, 175, 421, 1020, 2461, 5945, 14351, 34650, 83651, 201955, 487561, 1177080, 2841721, 6860525, 16562771, 39986070, 96534911, 233055895, 562646701, 1358349300, 3279345301, 7917039905, 19113425111, 46143890130, 111401205371, 268946300875 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).

FORMULA

a(0)=1, a(1)=5, a(2)=11, a(3)=30, a(n)=2*a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Dec 18 2012

a(n) = (-6-6*(-1)^n-5*sqrt(2)*((1-sqrt(2))^(1+n)-(1+sqrt(2))^(1+n)))/8. - Colin Barker, May 26 2016

MATHEMATICA

CoefficientList[Series[(-1-3x+x^2)/((1-x)(x+1)(x^2+2x-1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 5, 11, 30}, 40] (* Harvey P. Dale, Dec 18 2012 *)

PROG

(PARI) Vec((-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 26 2016

CROSSREFS

Cf. A100828, A114647, A114689, A114695, A114696, A114697, A000129.

Sequence in context: A179256 A209659 A266820 * A257717 A192194 A239842

Adjacent sequences:  A114685 A114686 A114687 * A114689 A114690 A114691

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Feb 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:34 EST 2017. Contains 295001 sequences.