This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100828 Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)). 11
 1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A floretion-generated sequence relating NSW and Pell numbers. Elements of odd index in the sequence gives A002315. a(n+2) - a(n) = A002203(n+2). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Robert Munafo, Sequences Related to Floretions Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1). FORMULA a(n) = (u^(n+1)+1)*(v^(n+1)+1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007 From Colin Barker, Apr 29 2019: (Start) G.f.: (1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)). a(n) = (1 + (-1)^(1+n) + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n)) / 2. a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End) PROG Floretion Algebra Multiplication Program, FAMP Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[B*C} with B = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and C = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e (PARI) Vec((1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Apr 29 2019 CROSSREFS Cf. A002315, A002203. Sequence in context: A077920 A234269 A135582 * A267488 A230601 A132207 Adjacent sequences:  A100825 A100826 A100827 * A100829 A100830 A100831 KEYWORD easy,nonn AUTHOR Creighton Dement, Jan 06 2005; revised Aug 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)