OFFSET
0,1
COMMENTS
Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
Let Phi := 1/2*(sqrt(5) - 1) denote the reciprocal of the golden ratio. This sequence, apart from the initial term, gives an Engel expansion of x = Phi^6 to the base b = Phi^2. The associated Engel series expansion of Phi^6 to the base Phi^2 begins Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ....
This result can be extended in two ways. Firstly, for k = 1,2,3,... , the sequence {Lucas(k*(2^n + 2))}n>=1 is an Engel expansion of Phi^(6*k) to the base Phi^(2*k). Secondly, for n = 1,2,3,..., the sequence [a(n),a(n+1),a(n+2),...] is an Engel expansion of Phi^(2^n + 4) to the base Phi^2. See below for some examples.
LINKS
Wikipedia, Engel Expansion
FORMULA
EXAMPLE
Engel series expansion of Phi^(2^n + 4) to the base Phi^2 for n = 1 to 4.
n = 1
Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ...
n = 2:
Phi^8 = Phi^2/18 + Phi^4/(18*123) + Phi^6/(18*123*5778) + ...
n = 3:
Phi^12 = Phi^2/123 + Phi^4/(123*5778) + Phi^6/(123*5778*12752043) + ...
n = 4:
Phi^20 = Phi^2/5778 + Phi^4/(5778*12752043) + ...
MATHEMATICA
Table[LucasL[2^n + 2], {n, 0, 10}]
PROG
(PARI) for(n=0, 10, print1(fibonacci(2^n+3) + fibonacci(2^n +1), ", ")) \\ G. C. Greubel, Dec 22 2017
(Magma) [Lucas(2^n +2): n in [0..10]]; // G. C. Greubel, Dec 22 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 28 2013
STATUS
approved