

A230601


a(n) = Lucas(2^n + 2).


4



4, 7, 18, 123, 5778, 12752043, 62113250390418, 1473646213395791149646646123, 829490056885282616312940022414182153153900944625970578, 262813148121156922478324605390890951672774150584488451750823334086851733999224817160730017360019778038580843
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
Let Phi := 1/2*(sqrt(5)  1) denote the reciprocal of the golden ratio. This sequence, apart from the initial term, gives an Engel expansion of x = Phi^6 to the base b = Phi^2. The associated Engel series expansion of Phi^6 to the base Phi^2 begins Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ....
This result can be extended in two ways. Firstly, for k = 1,2,3,... , the sequence {Lucas(k*(2^n + 2))}n>=1 is an Engel expansion of Phi^(6*k) to the base Phi^(2*k). Secondly, for n = 1,2,3,..., the sequence [a(n),a(n+1),a(n+2),...] is an Engel expansion of Phi^(2^n + 4) to the base Phi^2. See below for some examples.


LINKS

Table of n, a(n) for n=0..9.
Wikipedia, Engel Expansion


FORMULA

a(n) = A000032(2^n+2) = phi^(2^n+2) + (1/phi)^(2^n+2), where phi = 1/2*(1 + sqrt(5)) denotes the golden ratio A001622.
Recurrence equation: a(0) = 4 and a(n) = floor((2  phi)*a(n1)^2) for n >= 1.


EXAMPLE

Engel series expansion of Phi^(2^n + 4) to the base Phi^2 for n = 1 to 4.
n = 1
Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ...
n = 2:
Phi^8 = Phi^2/18 + Phi^4/(18*123) + Phi^6/(18*123*5778) + ...
n = 3:
Phi^12 = Phi^2/123 + Phi^4/(123*5778) + Phi^6/(123*5778*12752043) + ...
n = 4:
Phi^20 = Phi^2/5778 + Phi^4/(5778*12752043) + ...


MATHEMATICA

Table[LucasL[2^n + 2], {n, 0, 10}]


PROG

(PARI) for(n=0, 10, print1(fibonacci(2^n+3) + fibonacci(2^n +1), ", ")) \\ G. C. Greubel, Dec 22 2017
(MAGMA) [Lucas(2^n +2): n in [0..10]]; // G. C. Greubel, Dec 22 2017


CROSSREFS

Cf. A000032, A001622, A192223, A230600, A230602.
Sequence in context: A135582 A100828 A267488 * A132207 A097537 A032723
Adjacent sequences: A230598 A230599 A230600 * A230602 A230603 A230604


KEYWORD

nonn,easy


AUTHOR

Peter Bala, Oct 28 2013


STATUS

approved



