|
|
A077920
|
|
Expansion of (1-x)^(-1)/(1+2*x-x^2-x^3).
|
|
1
|
|
|
1, -1, 4, -7, 18, -38, 88, -195, 441, -988, 2223, -4992, 11220, -25208, 56645, -127277, 285992, -642615, 1443946, -3244514, 7290360, -16381287, 36808421, -82707768, 185842671, -417584688, 938304280, -2108350576, 4737420745, -10644887785, 23918845740, -53745158519, 120764274994
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..32.
Index entries for linear recurrences with constant coefficients, signature (-1, 3, 0, -1).
|
|
FORMULA
|
a(n) = (-1)^n*A124400(n). - Philippe Deléham, Dec 18 2006
a(n) = a(n-1) + 3*a(n-2) - a(n-4); a(0)=1, a(1)=-1, a(2)=4, a(3)=-7. - Harvey P. Dale, Mar 13 2013
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x)^(-1)/(1+2x-x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{-1, 3, 0, -1}, {1, -1, 4, -7}, 40] (* Harvey P. Dale, Mar 13 2013 *)
|
|
PROG
|
(PARI) Vec((1-x)^(-1)/(1+2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
|
|
CROSSREFS
|
Sequence in context: A219754 A289975 A124400 * A234269 A135582 A100828
Adjacent sequences: A077917 A077918 A077919 * A077921 A077922 A077923
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
N. J. A. Sloane, Nov 17 2002
|
|
STATUS
|
approved
|
|
|
|