

A100831


Decimal expansion of log(4)/log(3).


4



1, 2, 6, 1, 8, 5, 9, 5, 0, 7, 1, 4, 2, 9, 1, 4, 8, 7, 4, 1, 9, 9, 0, 5, 4, 2, 2, 8, 6, 8, 5, 5, 2, 1, 7, 0, 8, 5, 9, 9, 1, 7, 1, 2, 8, 0, 2, 6, 3, 7, 6, 0, 8, 5, 5, 7, 4, 1, 3, 0, 9, 8, 8, 7, 6, 7, 7, 3, 7, 0, 4, 0, 2, 7, 6, 1, 8, 2, 9, 6, 1, 0, 1, 2, 2, 3, 4, 5, 3, 7, 7, 0, 9, 8, 9, 0, 3, 4, 9, 1, 1, 2, 2, 7, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

log_3(4) is the Hausdorff dimension of the Koch snowflake.


REFERENCES

Martin Gardner, Aha! Gotcha!, "A Pathological Curve", pp. 77 W. H. Freeman NY 1982.
Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, pp. 227 University of Chicago Press IL 1983.
Martin Gardner, The Colossal Book of Mathematics, pp. 322 W. W. Norton NY 2001.
Nigel LesmoirGordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, page 28.
Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 177.
David Wells, The Penguin Dictionary of Curious and Interesting Geometry, pp. 1356 Penguin Books 1991.


LINKS

Table of n, a(n) for n=1..105.
V. L. Almstrum, Visual Koch (Applet)
Robert Ferreol & Jacques Mandonnet, Koch's Curve
Florida Atlantic University, Koch's Curve Applet
P. Kernan, Koch Snowflake
Kris, Koch Fractal,Koch Snowflake
Aaron Krowne, PlanetMath.org, Koch curve
M. L. Lapidus & E. P. J. Pearse, A tube formula for the Koch snowflake curve,with applications to complex dimensions
Simon Plouffe, log4/log3 to 10000 digits
Larry Riddle, Koch Curve
Alain Schuler, Chaos and fractal:the Koch's curve
Gerard Villemin, Almanac of Numbers, Koch's Curve or Snowflake
Eric Weisstein's World of Mathematics, Koch Snowflake
Eric Weisstein's World of Mathematics, Cantor Dust
Wikipedia, Koch curve


EXAMPLE

log(4)/log(3) = 1.26185950714291487419905422868552170859917128...


MATHEMATICA

RealDigits[Log[3, 4], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2005 *)


CROSSREFS

Cf. A094148.
Sequence in context: A136764 A136765 A011041 * A136763 A109530 A111519
Adjacent sequences: A100828 A100829 A100830 * A100832 A100833 A100834


KEYWORD

nonn,cons


AUTHOR

Lekraj Beedassy, Jan 07 2005


EXTENSIONS

More terms from Robert G. Wilson v, Jan 07 2005


STATUS

approved



