login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143332 Related to Gray code representation of Fibonacci(n) in base 10. 0
0, 1, 1, 3, 2, 7, 12, 11, 31, 51, 44, 117, 216, 157, 453, 851, 566, 803, 788, 127, 859, 931, 440, 521, 432, 409, 809, 739, 458, 239, 828, 947, 391, 531, 148, 173, 360, 837, 61, 1011, 942, 475, 36, 375, 307, 579, 496, 145, 864, 689, 465 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This is not A003188(A000045(n)) for n>=17. - Jose-Angel Oteo, Mar 09 2015

The Gray code of Fibonacci(n) is now listed in A255919 = A003188 o A000045. It would be appreciated to know the precise definition of the present sequence, presumably computed via the incomplete and somewhat obscure Mathematica code given below. In view of the definition, might it be related to the decimal Gray code A003100 or another variant? R. J. Mathar remarks that A143214 and A143210 have Mathematica code of a two-argument GrayCode[] function. - M. F. Hasler, Mar 11 2015

LINKS

Table of n, a(n) for n=0..50.

MATHEMATICA

GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ]; FromGrayCodeList[d_] := Module[{b = d, i, j}, Do[ If[Mod[Sum[b[[j]], {j, i - 1}], 2] == 1, b[[i]] = 1 - b[[i]]], {i, n = Length[d], 2, -1} ]; FromDigits[b, 2] ]; GrayCode[i_, n_] :=

CROSSREFS

Cf. A255919, A003188, A000045, A003100, A143214, A143210.

Sequence in context: A219187 A143329 A053440 * A255919 A212189 A114647

Adjacent sequences:  A143329 A143330 A143331 * A143333 A143334 A143335

KEYWORD

nonn,obsc

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 21 2008

EXTENSIONS

Edited by M. F. Hasler, Mar 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 14:26 EDT 2019. Contains 324325 sequences. (Running on oeis4.)